
Can a Chatbot Support Software Engineers with Load Testing?
Approach and Experiences

Dušan Okanović
Novatec Consulting GmbH, Germany

Samuel Beck
Lasse Merz

Christoph Zorn
Leonel Merino

André van Hoorn
University of Stuttgart, Germany

Fabian Beck
University of Duisburg-Essen,

Germany

ABSTRACT
Even though load testing is an established technique to assess load-
related quality properties of software systems, it is applied only
seldom and with questionable results. Indeed, configuring, execut-
ing, and interpreting results of a load test require high effort and
expertise. Since chatbots have shown promising results for inter-
actively supporting complex tasks in various domains (including
software engineering), we hypothesize that chatbots can provide
developers suitable support for load testing.

In this paper, we present PerformoBot, our chatbot for config-
uring and running load tests. In a natural language conversation,
PerformoBot guides developers through the process of properly
specifying the parameters of a load test, which is then automatically
executed by PerformoBot using a state-of-the-art load testing tool.
After the execution, PerformoBot provides developers a report that
answers the respective concern. We report on results of a user study
that involved 47 participants, in which we assessed our tool’s ac-
ceptance and effectiveness. We found that participants in the study,
particularly those with a lower level of expertise in performance
engineering, had a mostly positive view of PerformoBot.

ACM Reference Format:
Dušan Okanović, Samuel Beck, Lasse Merz, Christoph Zorn, Leonel Merino,
André van Hoorn, and Fabian Beck. 2020. Can a Chatbot Support Software
Engineers with Load Testing? Approach and Experiences. In Proceedings
of the 2020 ACM/SPEC International Conference on Performance Engineering
(ICPE ’20), April 20–24, 2020, Edmonton, AB, Canada. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3358960.3375792

1 INTRODUCTION
The fulfillment of non-functional requirements is of utmost impor-
tance for the success of software and the business that depends on
it. The evaluation of non-functional properties of software, such
as performance, includes choosing appropriate tools and methods,
setting them up, executing them, and collecting performance data.
The next step is to make sense of this data, i.e., to analyze it and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00
https://doi.org/10.1145/3358960.3375792

to find if and where there are performance problems. All of these
steps require a significant level of expertise and can successfully
be executed usually only with a significant effort. However, perfor-
mance experts come in short supply and even if they are available,
the task of performance analysis can be time-consuming and er-
ror prone [13]. Existing approaches that aim to simplify this pro-
cess [34, 35] are limited to either choosing the underlying approach
or result interpretation.

One interesting trend that can be observed in recent years is
the increasing use of chatbots, which simulate human-like con-
versations in order to answer questions, provide information, and
trigger other services [11]. Chatbots are becoming increasingly pop-
ular also in the domain of software development, where chatbots
provide support to developers in their everyday work [2].

The overarching goal of our work is to provide support, espe-
cially to those with little to no expert knowledge of the required
methods and tools, in executing performance evaluation tasks. We
see chatbots as a promising tool for approaching this goal. The par-
ticular contribution of this paper is to investigate this hypothesis
by presenting our PerformoBot chatbot that supports in a partic-
ular performance evaluation task—namely load testing— and by
evaluating PerformoBot’s effectiveness and usability in a user study.

By interacting with our PerformoBot in natural language, users
can specify load test parameters, such as domain, workload, dura-
tion, and metric of interest. They receive execution reports tailored
exactly to those concerns, while the chatbot does background tasks
of configuring the appropriate tools and analyzing the data to ex-
tract the information needed to answer the stated concern. To run
the performance analysis, PerformoBot creates an actual configu-
ration for a specific (load testing) tool. For generating the reports
based on the collected data, we use the Vizard framework [23]. This
way, the user receives a clear and concrete answer to the stated
concern, together with appropriate visualizations and generated
textual explanations.

The user study aimed to investigate (i) how PerformoBot helps
developers to create and execute a load test, (ii) how developers
perceive PerformoBot and the interaction with it, (iii) what edu-
cational effect PerformoBot has on developers, and (iv) how the
interaction with PerformoBot depends on the knowledge and ex-
perience of developers. In the study, each participant was asked
to solve a load testing task using PerformoBot and to answer a
questionnaire on the task and the experiences with PerformoBot.
The study was conducted as an online study and answered by 47
participants with different levels of expertise. The results suggest

https://doi.org/10.1145/3358960.3375792
https://doi.org/10.1145/3358960.3375792

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Dušan Okanović, Samuel Beck, Lasse Merz, Christoph Zorn, Leonel Merino, André van Hoorn, and Fabian Beck

that PerformoBot supports especially novice users in conducting
load tests. Moreover, the survey results guide future directions with
respect to extensions.

The rest of the paper is structured as follows. Section 2 provides
the background for our work. In Section 3 we present our approach.
In Sections 4 and 5 we present the results of the conducted user
study. Section 6 presents an overview of related works in this field
and in Section 7 we draw conclusions and outline future work. The
supplementary material, containing the artifacts from the paper
and the results of the survey, is available online [21].

2 BACKGROUND
When analyzing user inputs, chatbots use the concepts of intents
and entities [1]. Within user inputs, chatbots identify intents, i.e.,
the keywords and phrases a chatbot reacts to, which represent what
the user of a chatbot wants (to do, to know, etc). In the training
phase, developers of the chatbot define expected phrases that should
be mapped to one intent. The phrases are used to train a machine
learning model for natural language in order to recognize similar
phrases. Entities can be considered parameters for intents and can
be mandatory or optional. The difference is that, if any of the
mandatory entities is missing, the chatbot will ask the user to
specify it. In general, anything can be defined as an entity, be it
something simple or a combination of previously defined entities.
Afterwards, these entities are manually marked in the training
phrases of corresponding intents.

An example of intents and corresponding entities is shown in
Figure 1 as an excerpt of a conversation between a user and a chatbot

"I want to book a flight from New York
to Paris for next monday."

"Add a second seat on the same flight
and add extra luggage."

 Intent: Flight booking

 Output Context: Booking

 Mandatory entities:

Start location
Destination
Date

 Training Phrases:

 "I would like to fly to
 Berlin from Stuttgart on November 4th."

 "Please book me a ticket from
 Hamburg to Los Angeles tomorrow."

 "On the 23rd of March I need to fly
 from London to Sydney."

I have booked a flight from New York to
Paris for next monday. Do want

something else?

I have added a second seat and one
extra piece of luggage.

 Intent: Extra booking

 Input Context: Booking

 Optional entities:

Additional seats
Extra Luggage

 Training Phrases:

 "Add an additional seat."

 "I need another seat.
 Add extra luggage."

 "Add extra luggage and a second seat."

Figure 1: An example of intents and corresponding entities
for a chatbot that helps with flight bookings.

that provides help with booking a flight.1 The sentence “I would like
to fly to Berlin from Stuttgart on November 4th” represents one of
the training phrases. Based on these training phrases, the chatbot is
also able to recognize a similar phrase (“I want to book a flight from
New York to Paris for next Monday.”) in the actual conversation.
Typically, this is an iterative process, where developers add new
training phrases as the chatbot is being used, because people always
find new ways to interact with the chatbot.

Chatbot frameworks only provide means to implement logic.
An additional conversational UI can be developed or they can
be integrated with popular communication platforms like Slack,
Telegramm, Facebook Messenger, or Skype. Currently, there is a
multitude of chatbot frameworks, e.g., Microsoft Bot Framework,2
Amazon Lex,3 IBM Watson Assistant,4 and Dialogflow.5

3 PERFORMOBOT
In this section we describe PerformoBot. The modeling of the inter-
action between PerformoBot and its users is described in Section 3.1.
In Section 3.2 we provide details on the implementation.

3.1 Modeling Conversations
PerformoBot is designed as a bot in a pull mode [33], i.e., the user is
the one who initiates the interaction. The bot has two main tasks:
First, it interacts with a user with the goal to specify the load test.
Second, it processes the collected data and generates a report to
provide explanations, with the help of the Vizard framework [23].

The model shown in Figure 2 presents possible flows of con-
versation between PerformoBot and different types of users (we
are using the BPMN 2.06 notation). A typical conversation starts
with an exchange of greetings between the user and the chatbot,
where the chatbot also provides a brief explanation of what it can
do. During the conversation, PerformoBot recognizes the level of
experience of the user and guides the conversation further. This was
implemented by specifying different training phrases and intents
for different types of users.

In the example in Figure 3a, we defined an intent for users with-
out knowledge about load tests using training phrases like “I want
to create a load test” or “Help me define a load test”. As a result,
the phrase “Please perform a load test for me” was recognized by
PerformoBot. The chatbot then explains to the user what is needed
to set up a load test, i.e., workload, domain, and the metric that
will be collected. The collection of the parameters is done using
another intent. The parameters are defined as entities and were
chosen according to typical load test scenarios, namely: workload,
target domain (URL), duration of the test, and metric that will be
observed. If some entity is missing from the user input, PerfomoBot
will ask the user for a value of that entity. The process is repeated
until all entities have their respective value. Users with limited
knowledge in the area of performance engineering may need more
explanations about what PerformoBot can do and more information
on performance evaluation in general. Users with some knowledge

1The example is based on the ideas in: https://blog.aimultiple.com/business-chatbot/
2https://dev.botframework.com/
3https://aws.amazon.com/lex/
4https://www.ibm.com/cloud/watson-assistant/
5https://dialogflow.com
6Business Process Model And Notation, www.omg.org/spec/BPMN/2.0/

https://blog.aimultiple.com/business-chatbot/

Can a Chatbot Support Software Engineers with Load Testing? Approach and Experiences ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

New User What can you
do?

Perform Loadtest

Perform Loadtest

Casual User

Confirm Test Interact with
Results

Define
Parameters

Goodbye

Cancel

Hello

Parameters

Expert User

Greetings Compile Test
Request

Gather missing
Parameters Execute TestDefine Test Notify User Present Results

Chatbot

User

Figure 2: Overview of the interaction between PerformoBot and a user.

(Figure 3b) in the field might be able to directly follow the flow of
setting up a load test, probably without requiring explanations on
the topic. Lastly, expert users are probably able to skip most parts
of the conversation and directly set up a load test with preexisting
knowledge of typical parameters (Figure 3c).

At any point in this interaction, the user can ask about explana-
tions of specific keywords, parameters, and metrics before continu-
ing with the task specification, e.g., “What is a load test?”, “What is
a domain?”, “What is latency?”. After defining parameters with the
help of PerformoBot, users are presented with the current setup
of their load test. They can change any of these parameters, reset
the whole setup, or let PerformoBot execute the load test. Possible
conversation flows for users with different levels of experience are
shown in Figure 3. When the user confirms the setup of the test,
PerformoBot passes this information to the Vizard framework [23],
which executes the test and generates a report that PerformoBot
shows to the user.

The user can also interact with the obtained results, setup more
load tests, or end the conversation. If anything goes wrong, the user
is always able to cancel the conversation, which clears specified
parameters, and the conversation can start from the beginning.

To implement PerformoBot we chose Google’s chatbot frame-
work Dialogflow. We defined every activity from Figure 2 as an
intent in PerformoBot. These intents are specified in the web inter-
face of Dialogflow using the training phrases related to that intent.
Using this mechanism, we also configure the chatbot responses
that are triggered by a specific user message. This allowed us to
adapt responses dependent on what load test parameters the user
already defined and to store these parameters over the duration
of the conversation. Another possibility would have been to guide
the user through a specific order of intents and to not allow her to
continue until a specific parameter is defined. However, our design
decision allowed for more open interactions, letting the users jump
between load test specification and explanations, as well as specify
load tests faster by skipping unnecessary questions.

3.2 Implementation of PerformoBot
The main components required for the processing of user requests
are shown in Figure 4.

In Dialogflow, we specify the language model used by Perfor-
moBot. Users interact with PerformoBot through the interface of
Dialogflow to configure a load test. When a conversation reaches
the point where the configuration is finished, i.e., when the bot
has collected from the user all the parameters required for the test,
the performance experiment is executed, and the user has to wait
for the results of the analysis tool. Because Dialogflow is limited
to conversations, we had to implement the fulfillment functional-
ity [1] for Dialogflow to connect it to a web service that actually
executes load tests.We send the load test configuration to the Vizard
framework [22], which executes load tests and sends back execu-
tion reports. For the load test execution itself, Vizard uses Apache
JMeter.7 A web service is implemented as a wrapper around Vizard.
The service analyzes the data and extracts the information needed
to create a response, which is then sent back to Dialogflow to be
shown to the user.

In order to avoid that users have to wait for their results, we
use the event technology of Dialogflow, allowing Vizard to notify
PerformoBot once the performance analysis is finished. This way,
the generated report can be shown to the user via a link. An exam-
ple performance report is depicted in Figure 5. It consist of three
different parts. First, the performance concern is shown on the top,
followed by a diagram showing the requested metric, a general
background description, and a specific answer to the concern. The
second part of the report describes the details of the performance ex-
periment. This description contains the used tool, duration, number
of samples, and the collected metrics. A description of the analysis
tool and further references to it are also provided. The third part
of the report covers additional metrics collected during the exper-
iment. Each section of the other metrics contain also a diagram
visualizing further data.

7https://jmeter.apache.org/

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Dušan Okanović, Samuel Beck, Lasse Merz, Christoph Zorn, Leonel Merino, André van Hoorn, and Fabian Beck

Hi

Hello!	I	am	PerformoBot.	I	am	here
to	help	you	with	your	performance
evaluation.	If	you	have	any
questions	feel	free	to	ask	about
anything	you	don't	understand.
Please	state	your	performance
evaluation	concern.

Please perform a
load test for me.

Very	well,	let	me	help	to	create	a
load	test	together.	I	need	to	know
what	load	you	want	to	use,	the
domain	to	be	tested	and	the
metric	which	should	be	measured.

Set the load to
100 users.

Please	enter	the	domain	(e.g.
www.google.com).

Test www.example.com.

Please	enter	the	metric
(e.g.	latency).

Use server status.

Very	well,	I	set	up	a	load	test	for
you	with	the	following	parameters:
load:	100	users,	domain:
www.example.com,	metric:	server
status.	If	you	are	satisfied	I	can
execute	the	load	test.	Otherwise,
you	can	change	the	parameters,
add	more	parameters	from	the
parameter	list	or	reset	and	start
over.

(a) Novice users.

Set up a load test
with 100 users.

Please	enter	the	domain
(e.g.	www.google.com).

Test www.example.com.

Please	enter	the	metric
(e.g.	latency).

Use server status.

Very	well,	I	set	up	a	load	test	for
you	with	the	following	parameters:
load:	100	users,	domain:
www.example.com,	metric:	server
status.	If	you	are	satisfied	I	can
execute	the	load	test.	Otherwise,
you	can	change	the	parameters,
add	more	parameters	from	the
parameter	list	or	reset	and	start
over.

(b) Medium users.

load test, 100 users,
www.example.com,
server status

Very	well,	I	set	up	a	load	test	for
you	with	the	following	parameters:
load:	100	users,	domain:
www.example.com,	metric:	server
status.	If	you	are	satisfied	I	can
execute	the	load	test.	Otherwise,
you	can	change	the	parameters,
add	more	parameters	from	the
parameter	list	or	reset	and	start
over.

(c) Advanced users.

Figure 3: Different flows of conversation between a novice (left), a user with medium experience (middle), and a user with an
advanced knowledge with respect to load testing (right).

Language Model Definition

DialogflowPerformoBot UserVizard

sends concern
parameters

creates
Performance Report

sends
user input

sends
bot response

states performance
concern

shows bot
response

defines

executes performance
experiment

uses

Figure 4: Main components in the system.

Can a Chatbot Support Software Engineers with Load Testing? Approach and Experiences ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Figure 5: Performance report (excerpt) with visualizations.

4 USER STUDY
To analyze how PerformoBot can support developers in creating
and executing a load testing task, we designed a user study. We de-
scribe its design, research questions, characteristics of participants,
procedure, and data collection.

4.1 Study Design
To investigate the effects of using PerformoBot on user perfor-
mance, we assess the participants’ responses to a task with respect
to correctness and completion time. We also measure learning as-
pects to analyze whether the explanations of PerformoBot have
an educational effect on participants. We examine user experience
in terms of perceived helpfulness. To analyze how the expertise
of participants affects their perception of PerformoBot’s support,
we invited participants with various levels of expertise in software
(performance) engineering. We summarize the goals of our experi-
ment using the template proposed by Wohlin et al. [36]:

Analyze a chatbot-based approach for the purpose of supporting
software developers in executing software performance engineering
activities with respect to acceptance and effectiveness from the
point of view of the developers.

We address our goals through the following research questions:

RQ1: How does PerformoBot help participants to create and exe-
cute a load test?

RQ2: How do participants perceive PerformoBot and interact with
it?

RQ3: What educational effect does PerformoBot have on the par-
ticipants?

RQ4: How does the interaction with PerformoBot depend on the
knowledge and experience of the participants?

To answer these research questions, we designed and conducted
an online user study. An online user study allowed us to reach a
larger and more heterogeneous set of participants.

Pilot: We ran a pilot study with three participants to detect poten-
tial issues and estimate the duration required to complete the task.
We invited to the pilot study participants with little experience in
performance evaluation. We used the slowest execution time of
participants in the pilot to define the duration of the study. We
did not find crucial issues with the design of the user study, and
therefore, we started the actual user study shortly afterwards.

Tools: We used Google Forms to implement the questionnaire.
To link the data of each user from the form and Dialogflow, we
created a unique identification number for each participant that
was required to start the conversation with the chatbot and to fill
in the questionnaire.

4.2 Participants
We designed the study to involve participants of a wide range of lev-
els of experience in software performance engineering, both from
academia and industry. To further extend the number of potential
participants, we promoted the user study using social media as well
as through invitations sent by email to a list of selected software
developers.

4.3 Procedure
In the study, participants were asked to create and execute a load
testing task. Afterwards, the participants had to fill in a question-
naire to collect their feedback.

Load testing task.We presented a scenario that involves a web
system that expects a heavy load in the near future. The participants
were asked to investigate whether the system would be able to
handle this load. The parameters necessary to complete the task
were provided in a description of the scenario that included: (i) the
expected number of users, (ii) the system’s domain, and (iii) the
metric that was to be analyzed. After introducing the scenario, the
participants were asked to start a conversation with the chatbot to
solve the task. The participants were expected to interact with the
chatbot to identify the parameters needed to create and configure
a load test. After specifying the load test, the participants could ask
the chatbot to execute the load test or modify it further. We limited
the time that participants could spend in the task to eight minutes
to ensure that the participants concentrated on the task. Once
the time limit was reached, the chatbot provided the correct load
test configuration, and showed a pre-generated report. Finally, the
participants moved on to the study’s questionnaire. In the interest
of time, we did not run the test, rather we were displaying a pre-
generated report of a load test execution for the system in question.

Questionnaire. The participants were asked, based on the given
result in the report, to answer the scenario’s question, i.e., whether

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Dušan Okanović, Samuel Beck, Lasse Merz, Christoph Zorn, Leonel Merino, André van Hoorn, and Fabian Beck

the system would be able to handle the load. The questionnaire
consisted of three sections (as can be seen in [21]).

Firstly, we asked the participants about their background in com-
puter science and their familiarity and knowledge of performance
evaluation. Additionally, we asked them whether they have previ-
ous experience with chatbots, i.e., how often they have used one
and what kinds of chatbots they have interacted with before.

Secondly, we asked the participants whether they were able to
complete the task and, if not, to explain why. Next, the participants
were asked to answer the task question, namely whether the servers
are able to handle the increased load in the described scenario. We
opted to provide all participants with the same information, even
if they created a different load test. We also asked the participants
how much support PerformoBot gave them to solve the task. Specif-
ically, we asked which features were particularly helpful and which
ones they felt were missing to complete the task. Additionally, the
participants were asked to summarize their impressions using only
one adjective. The participants were asked to rate, using a 5-step
Likert scale, how natural the conversation felt to them, how under-
standable the explanations of PerformoBot were, and if they felt
they learned something new about performance evaluation based
on the conversation with the chatbot.

Lastly, the participants were asked about PerformoBot in general,
i.e., whether they would recommend PerformoBot for performance
evaluation, and if so, why.

4.4 Data Collection
We collected the following data from the sessions: (i) the number of
participants who successfully complete the task, which illustrates
the overall support that our chatbot can give to developers when
performing analysis experiments; (ii) the correctness and the time
needed by the participants to complete the task, which relate to
the effectiveness of PerformoBot on user performance; (iii) the
interactions with the chatbot, which support a quantitative analysis
(e.g., number of sentences written by the participants) as well as
a qualitative analysis (e.g., implicit intent of written sentences);
(iv) time spent with the chatbot, during and after the study; (v) the
answers from the questionnaire, which enable, for instance, to
group expert and beginner participants’ responses; (vi) the distance
of participants’ interactions to their actual intent, which measures
a potential learning effect of PerformoBot on the participants.

5 RESULTS
The total number of participants was 47, and all of them answered
to have a background in computer science. 41 of them (87.2%) stated
that they were able to complete the task. 38 participants correctly
answered the scenario question in the questionnaire, i.e., whether
the service will be able to handle the load or not, three answered
wrongly and six answered that they do not know. Of the six partic-
ipants who were not able to complete the task, three were still able
to answer the scenario question correctly based on the displayed
report and the other three answered that they do not know. This
also means that out of the participants who have answered that
they successfully completed the task, three answered wrongly to
the scenario question and another three participants answered that
they did not know.

The reasons for not completing the task were two-fold. For some
participants the available time was too short to learn and to set
up the load test, or there was too little guidance about how to
correctly use PerformoBot in terms of keywords and parameters.
Other participants, who answered that they did not complete the
task, reported that this kind of load test is too simple and incomplete
to actually answer the scenario.

To execute the load testing task, participants on average used 3.64
minutes of the available eight minutes, with a standard deviation of
1.86 minutes. It has to be noted, however, that these values are not
particularly precise, since Dialogflow rounds the recorded times
down to minutes, which means if someone took 3 minutes and
40 seconds it got rounded to 3 minutes. The participants sent on
average 11.53 messages when interacting with the bot (the median
was 10), with a standard deviation of 5.84 coming mainly from
5 participants with over 20 interactions and 4 participants who
needed less than 5 messages.

In the following sections we discuss the results of the question-
naire in regard to our research questions.

5.1 RQ1: How does PerformoBot help
participants to create and execute a load
test?

In order to evaluate in what ways PerformoBot was able to help
participants to set up, execute, and analyze a load test, we asked
them about their experiences completing the given task.

Participants find PerformoBot helpful, but raise potentials for
improvement.

The most helpful reasons were the automatic execution of the
load test (10), report creation (3), and the explanations (5). As vi-
sualized in Figure 6, the participants rated the helpfulness of Per-
formoBot on a scale from 1 to 5 with 3.33 on average. The answers
were relatively evenly distributed with 4 being the most frequent
answer given by 13 participants.

Next, we asked the participants about their experiences with
PerformoBot and what features where helpful or missing in the
context of completing the task. The feature mentioned as the most
helpful was PerformoBot’s ability to automatically create and exe-
cute the load test at the end. Facilitating this process automatically

0

5

10

15

1 2 3 4 5
Helpfulness

C
ou

nt

Figure 6: Perceived helpfulness of PerformoBot on a scale
from one (useless) to five (very helpful).

Can a Chatbot Support Software Engineers with Load Testing? Approach and Experiences ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

was seen as a great step to ease the process of load testing. Further-
more, seven participants specifically mentioned the explanations
PerformoBot gave them as a helpful feature. Another five partici-
pants commented on the list of available metrics to be a valuable
function. Two participants referenced the load test report, the feed-
back PerformoBot gave them, and the hints about the expected
input as beneficial features. One person specifically described not
needing any deep knowledge about load testing to use PerformoBot
as very helpful. Other participants shared a similar positive notion
about the clear description for the conversation flow, the question
sequence, and the general ease of use of PerformoBot.

When asked about missing features, the most common group of
comments was referring to missing help features. The participants
would also have liked to have more advice on available commands,
keywords, what a query should look like, and which questions
can be asked. Participants suggested examples that could eliminate
these problems: emphasizing the keywords the chatbot will react to,
suggesting how to correct the wrong input, and clearer instructions.
The second most frequent comments were related to the function-
ality of PerformoBot. Some participants tried to ask more detailed
questions about the given scenario and to create more complex
load test configurations, to which they did not get satisfying an-
swers. Some examples are questions about the infrastructure, load
balancing, and error handling. Additionally, participants missed the
possibility of specifying multiple load tests with different parame-
ters. Two participants even suggested to replace PerformoBot with
a window with input fields and a simple button. Some individual
problems were mentioned, like missing synonyms, a missing list of
metrics, and missing load test context.

We also asked the participants to describe their interaction with
PerformoBot in one adjective. 26 participants used a positive ad-
jective, 16 a negative and five a neutral one. The most used one
was “annoying” (four times), while “fast”, “curious”, “helpful” and
“intuitive” followed with two mentions each.

At the end, we asked the participants for reasons to recommend
or not recommend PerformoBot. They would recommend Perfor-
moBot mainly for novice, non-technical users, since they do not
need to know deeply about performance evaluation and could learn
more in the process. Additionally, most participants would use Per-
formoBot for its support in setting up, executing, and analyzing
load tests. Especially for small and simple problems, it is considered
a quick and simple way to perform load testing. One participant
suggested to use PerformoBot in other situations, such as in teach-
ing or in games. Some propose to use PerformoBot, together with a
built-in interactive documentation, as a 24/7 online remote assistant
with which one can communicate even on mobile devices for fast
performance evaluation.

On the other side, participants would not recommend Perfor-
moBot for complex performance evaluations. An in-depth analysis
of performance metrics and issues like bottlenecks, root cause anal-
ysis or stack tracing as well as more complicated use case scenarios
are currently not supported by PerformoBot. Some experts stated
that they would prefer to analyze these manually with their known
tools. Furthermore, participants described the current interaction
as too complicated, confusing, and frustrating. One participant
expressed this as spending more time trying to learn how to use
PerformoBot than actually solving the task. Instead, they would

suggest a user interface with form fields and explanatory pictures
or guides, as an alternative to PerfomoBot. For the future, partici-
pants suggested to provide examples, a list of keywords, and the
use of commands inside the chatbot. Additionally, they would like
to see features for more performance concerns, like identifying
the maximum capacity of a web service or information about the
outcomes of different parameter combinations.

5.2 RQ2: How do participants perceive
PerformoBot and interact with it?

The Dialogflow history of each participant was analyzed to find
common problems regarding their interaction with PerformoBot.
In the following, the most frequent answers are highlighted.

PerformoBot is lacking explanations and fallback mecha-
nisms to prevent unmatched intents and does not provide
enough insight into performance evaluation for expert users.

Expert users tried to get more information around the scenario,
i.e., about the infrastructure, usual workload, and the balancing
methods of the observed software system. Example questions of the
users were What is the network bandwidth? and How many servers
do we have? Since the bot did not provide intents for these kind
of questions, the participants were only given a fallback intent to
try another question. The absence of responses to these questions
were also prominent negative responses in the questionnaire.

Participants also asked the chatbot about more complex things
that were not related to the given scenario, or load testing in general.
For example, participants who had more than 15 interactions with
the bot challenged it with small talk and questions about computer
science, e.g., Can you calculate 3 + 1?,What is your name?, andWhat
is a computer?.

We also discovered that participants whose input could not be
matched to an intent tried to modify it repeatedly but used the
same input strategy. The most common example of this was when
the bot asked for a metric for the analysis: Please enter a metric
(e.g. latency). Users misunderstood this request and tried to answer
with an actual value for the latency and did not try to put in the
name of the metric at hand. We also discovered this occurrence in
the questionnaire responses of the participants who answered that
they got stuck in a conversation with the bot.

5.3 RQ3: What educational effect does
PerformoBot have on the participants?

To evaluate educational effects of PerformoBot and whether it al-
lows the users to learn more about performance evaluation, we
asked the participants to assess their knowledge of the field, before
and after the interaction with the bot.

Some educational effect of PerformoBot on the participants
could be observed.

When asked about their knowledge on the topic of the perfor-
mance evaluation, only two participants stated that they did know
what performance evaluation was before the study. Everyone else
already had some knowledge and rated it above average on a scale

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Dušan Okanović, Samuel Beck, Lasse Merz, Christoph Zorn, Leonel Merino, André van Hoorn, and Fabian Beck

0

5

10

15

20

1 2 3 4 5
Knowledge level of performance evaluations

C
ou

nt

(a) Self-assessed knowledge of the field
of performance evaluation on a scale
from one (none) to five (expert).

0

5

10

15

20

1 2 3 4 5
Learned something new

C
ou

nt

(b) Perceived educational effect of PerformoBot
on a scale from one (learned nothing) to five
(learned a lot).

Figure 7: The self-assessed knowledge level and gain of the
participants in thefield of software performance evaluation.

from 1 to 5, as illustrated in Figure 7a. We asked the participants if
they learned something new about performance evaluation through
PerformoBot and most of them did not, as shown in Figure 7b. Even
the two participants stating they did not know anything beforehand,
answered 2 and 3 respectively to this question.

5.4 RQ4: How does the interaction with
PerformoBot depend on the knowledge and
experience of the participants?

At the beginning of the questionnaire, the participants were asked
to estimate their knowledge in the field of software performance
evaluation on a scale from one (never heard about it before) to five
(expert). Figure 7a illustrates the answers to that question. It can
be seen that the majority of participants was quite knowledgeable
about software performance evaluations as the most common an-
swer is level four. All participants stated that they at least have
heard about the topic. For comparison between inexperienced or
novice users and expert users, the participants were split into two
categories depending on their knowledge about software perfor-
mance evaluations. The participants who estimated their expertise
below the average of 3.5 were assigned to the novice class (n=22),

while the participants whose expertise estimation was above this
average were assigned to the expert class (n=25).

Participants with less experience in performance evaluation
find PerformoBot to be more helpful and have a more positive
sentiment towards it than those with more experience.

Of the 22 participants that were categorized as novice users, 20
(90.9%) were able to complete the task that was given during the
study and 18 (81.8%) answered the scenario question correctly. In
comparison, 21 of the 25 expert users (84%) were able to complete
the task and 20 (80%) answered the scenario question correctly.

The novice participants who did not finish the task stated that
the given time was not enough to get familiar with the bot and that
it was unclear which phrases and metrics the bot expects as input.
The reasons why expert users did not finish the task are, e.g., that
the given time was too short for such a complex task, they expected
it to be more complicated than it actually was, or they thought the
task was not sufficient for answering the scenario question.

Figure 8a shows how different categories of participants rated
the helpfulness of PerformoBot in solving the given task. It can be
noted that the novice users perceive the bot as more helpful.

An analysis of the sentiment using the adjectives describing their
interaction with PerformoBot as seen in Figure 8b shows that 63.6%
of novice participants perceived their interaction as positive, 18.2%
perceived it as neutral, and another 18.2% as negative. On the other
hand, the sentiment of expert participants on the interaction was
divided: 44% of expert users perceived the interaction as positive
while 48% as negative, with 8% perceived the interaction as neutral.

5.5 Threats to Validity
In the selection of participants for the user study, we complemented
the invitations that we sent to participants highly experienced in
performance engineeringwith additional targeted invitations to less
experienced computer scientists and an open invitation on social
media. The resulting participants are not a representative sample of
all software developers, but the process ensured a desired diversity
of expertise levels regarding the subject of the study (see Figure 7a).
Hence, we assume a certain generalizability of the results beyond
the involved participants. We included in the study a task that is
relevant and included in other studies [26]. However, we were not
able to cover a wider variety of tasks due to length restrictions of
the online experiment (i.e., drop out rates would likely increase
when the study takes longer than 20–30 minutes). Also due to
the logistics of the study, we had to compromise on the realism
of the task introducing some simplifications and working with
only few parameters that users had to configure, which some of
the expert participants criticized. The anonymity of the online
experiment might have also invited participants to test the limits
of the system instead of following our instructions (i.e., taking the
task not too seriously), but in general, our impression from the
analyzed conversation protocols is that this affected only a small
number of cases. The study is not comparing our solution against a
baseline, which obviously limits the conclusiveness of our findings.
However, it was not possible to select a meaningful baseline from

Can a Chatbot Support Software Engineers with Load Testing? Approach and Experiences ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

1

2

3

4

5

novice expert
Knowledge level

H
el

pf
ul

ne
ss

(a) Perceived helpfulness of PerformoBot
on a scale from one (useless) to five (very
helpful) for different user types.

0

5

10

15

20

25

novice expert
Knowledge level

C
ou

nt

Sentiment negative neutral positive

(b) Sentiment about the interaction with
PerformoBot for different user types.

Figure 8: Helpfulness and sentiment of PerformoBot.

existing tools because only expert-oriented tools are available—
letting non-expert users try such a tool without extensive prior
training would only predictably result in failed tasks, and hence,
an unfair comparison.

6 RELATEDWORK
The problem of reducing the complexity of performance analysis
has been tackled previously. Solutions have been proposed for ab-
stracting the process of problem stating from choosing, configuring,
and running an appropriate performance analysis approach [28, 34].
Especially in the field of application performance management [12],
automatic analysis of the results is becoming an important require-
ment for tools that aim to be market leaders. The issue here is that
these approaches still require significant prior knowledge in the
field, as well as experience to analyze the results. Some works have
been proposed for integrating performance-awareness into devel-
opment environments, e.g., to assess and display the performance

(impact) on code changes using model-based and measurement-
based approaches (e.g., performance tests and production moni-
toring) [3, 7, 9, 14]. However, these approaches do not focus on
configuring the performance evaluation and do not include the
use of conversational interfaces such as chatbots. Generally, also
visualizations make performance analysis more accessible; vari-
ous specialized approaches have been suggested [15], but none for
visual reporting of load tests or similar scenarios.

Chatbots (also called conversational interfaces or natural language
interfaces) are gaining popularity in many applications and have
already been applied for data analysis. Not a full-fledged conversa-
tional interface, but a popular example that answers data-related
questions phrased as keywords or a sentence isWolfram|Alpha; it
often provides a mix of visualizations, tables, and lists as a reply,
but actual conversations are not possible. Also, general-purpose
search engines like Google answer more and more queries directly
or by providing visualized data-snippets (e.g., for “How many peo-
ple live in California?”). Srinivasan and Stasko [32] provide a short
overview of natural-language interfaces that are combined with
visualizations for data analysis—systems mostly focus on specify-
ing a visualization and trigger visualization-related interactions. A
recent example that covers both aspects is FlowSense [37] where
users can both generate visualizations (e.g., “Show a scatterplot of
‘mpg’ and ‘horsepower’.”) and control interactions (e.g., “Highlight
the selected cars in a parallel coordinates plot.”). Such systems are
different from our approach that specifies a data-generating test
scenario but does not immediately control the visualizations.

Also, software engineering research has started to investigate
the application of conversational interfaces in the context of the
development process. The BotSE 2019 workshop (co-locacted with
ICSE 2019) [30] discussed the usage of bots (chatbots being a sub-
type of these) in software engineering. Chatbots have been tested
or discussed, for instance, to find experts for a certain code arte-
fact [6], to help avoid potentially conflicting code changes [24],
or to support project meetings with background information on
the development [16]. Regarding the visualization of software de-
pendencies, chatbots can help to select and filter elements [5]; a
natural-language interface (here, also involving speech recognition)
is particularly useful when software visualizations are presented in
virtual reality, and hence, text input gets harder [29].

In addition to the chat interface, our approach provides the anal-
ysis results as a detailed interactive report. It is inspired by previous
work that uses natural language generation (NLG) [10, 27] to gen-
erate documentation of software or to report data analysis results.
For instance, there are approaches that textually summarize source
code [17, 18, 31], commits and releases [8, 19], or characteristics of
executed tests [25]. Some approaches combine the generated texts
with interactive visualizations similar to our reports, for instance, to
describe runtime information of amethod [4] or to summarize differ-
ent aspects of code quality [20]. In an earlier work-in-progress pub-
lication [23], we already sketched a reporting framework (Vizard),
which we now integrate with the chatbot interface.

7 CONCLUSION
We investigated whether and how a chatbot-based system, called
PerformoBot, can support developers in setting up, running, and

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Dušan Okanović, Samuel Beck, Lasse Merz, Christoph Zorn, Leonel Merino, André van Hoorn, and Fabian Beck

interpreting a load test. Through different flows of conversations,
the system allows asking questions and indirectly adapts to the
level of expertise of the user regarding performance engineering.
After the parameters of the test have been established through the
conversation, the system executes the test and presents the results
in the form of an interactive report featuring textual and visual
descriptions. In a user study with 47 computer scientists having a
diverse range of expertise regarding performance evaluation, we
could confirm that PerformoBot supports configuring and analyzing
a load test: participants generally were able to solve the task, they
mostly found the system helpful, and some participants agreed that
the system educated them on the topic. Furthermore, we found
that such a system might best support less experienced users. For a
future wider applicability, the system still needs to be extended with
more explanations, fallback mechanisms for unmatched intents, as
well as more advanced performance evaluation methods such as
different tests or additional configurable parameters.

ACKNOWLEDGMENTS
We would like to thank all participants of the user study. This
project is part of the project “Visual Reporting of Performance
and Resilience Flaws in Software Systems”, supported by Baden-
Württemberg Stiftung, and was partially funded by the Deutsche
Forschungsgemeinschaft (German Research Foundation; grants
Declare—HO 5721/1-1, SoftwareDynamics2—288909335, and TRR
161—251654672) and by the German Federal Ministry of Education
and Research (ContinuITy—01IS17010).

REFERENCES
[1] Dialogflow Concepts. https://cloud.google.com/dialogflow/docs/concepts.
[2] K. B. Ahmad Abdellatif and E. Shihab. A repository of research articles on

software bots. http://papers.botse.org.
[3] F. Beck, O. Moseler, S. Diehl, and G. D. Rey. In situ understanding of performance

bottlenecks through visually augmented code. In Proc. International Conference
on Program Comprehension, ICPC, pages 63–72, 2013.

[4] F. Beck, H. A. Siddiqui, A. Bergel, and D. Weiskopf. Method Execution Reports:
Generating text and visualization to describe program behavior. In Proc. IEEE
Working Conf. on Soft. Visualization, VISSOFT, pages 1–10, 2017.

[5] S. Bieliauskas and A. Schreiber. A conversational user interface for software vi-
sualization. In Proc. IEEE Working Conference on Software Visualization, VISSOFT,
pages 139–143. IEEE, 2017.

[6] J. Cerezo, J. Kubelka, R. Robbes, and A. Bergel. Building an expert recommender
chatbot. In Proc. 1st International Workshop on Bots in Software Engineering, BotSE,
pages 59–63. IEEE, 2019.

[7] J. Cito, P. Leitner, M. Rinard, and H. C. Gall. Interactive production performance
feedback in the IDE. In Proc. 41st International Conference on Software Engineering,
ICSE, pages 971–981, 2019.

[8] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk. On automat-
ically generating commit messages via summarization of source code changes. In
Proc. Int. Working Conf. on Source Code Analysis and Manipulation, SCAM, pages
275–284, 2014.

[9] A. Danciu and H. Krcmar. To what extent does performance awareness support
developers in fixing performance bugs? In Proc. 15th European Workshop on
Performance Evaluation, EPEW, pages 14–29, 2018.

[10] A. Gatt and E. Krahmer. Survey of the state of the art in natural language gener-
ation: Core tasks, applications and evaluation. Journal of Artificial Intelligence
Research, 61:65–170, 2018.

[11] L. Goasduff. Chatbots will appeal to modern workers. https://www.gartner.com/
smarterwithgartner/chatbots-will-appeal-to-modern-workers/, 2019.

[12] C. Heger, A. van Hoorn, M. Mann, and D. Okanovic. Application performance
management: State of the art and challenges for the future. In Proc. ACM/SPEC
International Conference on Performance Engineering, ICPE, pages 429–432. ACM,
2017.

[13] C. Heger, A. van Hoorn, D. Okanovic, S. Siegl, and A. Wert. Expert-guided
automatic diagnosis of performance problems in enterprise applications. In Proc.
12th European Dependable Computing Conference, EDCC, pages 185–188. IEEE,
2016.

[14] V. Horký, P. Libic, L. Marek, A. Steinhauser, and P. Tuma. Utilizing performance
unit tests to increase performance awareness. In Proc. 6th ACM/SPEC International
Conference on Performance Engineering, ICPE, pages 289–300, 2015.

[15] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann,
and P.-T. Bremer. State of the Art of Performance Visualization. In EuroVis -
STARs, 2014.

[16] C. Matthies, F. Dobrigkeit, and G. Hesse. An additional set of (automated) eyes:
chatbots for agile retrospectives. In Proc. 1st International Workshop on Bots in
Software Engineering, BotSE, pages 34–37. IEEE, 2019.

[17] P. W. McBurney and C. McMillan. Automatic documentation generation via
source code summarization of method context. In Proc. Int. Conf. on Program
Comprehension, ICPC, pages 279–290. ACM, 2014.

[18] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-Shanker.
Automatic generation of natural language summaries for Java classes. In Proc.
IEEE International Conference on Program Comprehension, ICPC, pages 23–32.
IEEE, 2013.

[19] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and G. Canfora. Auto-
matic generation of release notes. In Proc. International Symposium on Foundations
of Software Engineering, FSE, pages 484–495. ACM, 2014.

[20] H. Mumtaz, S. Latif, F. Beck, and D. Weiskopf. Exploranative code quality docu-
ments. IEEE Transactions on Visualization and Computer Graphics, 26(1), 2020.

[21] D. Okanović, S. Beck, L. Merz, C. Zorn, L. Merino, A. van Hoorn, and F. Beck.
Can a Chatbot Support Software Engineers with Load Testing? Approach and Ex-
periences — supplementary material. https://dx.doi.org/10.5281/zenodo.3662711,
2020.

[22] D. Okanović, A. van Hoorn, C. Heger, A. Wert, and S. Siegl. Towards performance
tooling interoperability: An open format for representing execution traces. In
Proc. European Workshop on Performance Engineering, EPEW, pages 94–108, 2016.

[23] D. Okanović, A. van Hoorn, C. Zorn, F. Beck, V. Ferme, and J. Walter. Concern-
driven reporting of software performance analysis results. In Companion of the
2019 ACM/SPEC International Conference on Performance Engineering, ICPE 2019,
pages 1–4, 2019.

[24] E. Paikari, J. Choi, S. Kim, S. Baek, M. Kim, S. Lee, C. Han, Y. Kim, K. Ahn,
C. Cheong, and A. van der Hoek. A chatbot for conflict detection and resolution.
In Proc. 1st International Workshop on Bots in Software Engineering, BotSE, pages
29–33. IEEE, 2019.

[25] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall. The impact
of test case summaries on bug fixing performance: An empirical investigation.
In Proc. IEEE/ACM 38th International Conference on Software Engineering, ICSE,
pages 547–558. IEEE, 2016.

[26] E. Proko and I. Ninka. Analyzing and testing web application performance.
International Journal of Engineering and Science, 3(10):47–50, 2013.

[27] E. Reiter, R. Dale, and Z. Feng. Building natural language generation systems. MIT
Press, 2000.

[28] H. Schulz, D. Okanović, A. van Hoorn, V. Ferme, and C. Pautasso. Behavior-driven
load testing using contextual knowledge—approach and experiences. In Proc.
ACM/SPEC International Conference on Performance Engineering, ICPE, 2019.

[29] P. Seipel, A. Stock, S. Santhanam, A. Baranowski, N. Hochgeschwender, and
A. Schreiber. Speak to your software visualization—exploring component-based
software architectures in augmented reality with a conversational interface. In
Proc. IEEE Working Conference on Software Visualization, VISSOFT. IEEE, 2019.

[30] E. Shihab and S. Wagner, editors. International Workshop on Bots in Software
Engineering, BotSE@ICSE 2019, 2019.

[31] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker. Towards au-
tomatically generating summary comments for Java methods. In Proc. IEEE/ACM
International Conference on Automated Software Engineering, ASE, pages 43–52,
2010.

[32] A. Srinivasan and J. Stasko. Natural language interfaces for data analysis with vi-
sualization: Considering what has and could be asked. In Proc. Eurographics/IEEE
VGTC Conference on Visualization, EuroVis, pages 55–59. Eurographics, 2017.

[33] M.-A. Storey and A. Zagalsky. Disrupting developer productivity one bot at a
time. In Proc. 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, pages 928–931, 2016.

[34] J. Walter, S. Eismann, J. Grohmann, D. Okanović, and S. Kounev. Tools for
declarative performance engineering. In Proc. ACM/SPEC International Conference
on Performance Engineering, ICPE, pages 53–56, 2018.

[35] J. Walter, A. van Hoorn, and S. Kounev. Automated and adaptable decision
support for software performance engineering. In Proc. 11th EAI International
Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS,
pages 66–73, 2017.

[36] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in software engineering. Springer Science & Business Media,
2012.

[37] B. Yu and C. T. Silva. FlowSense: A natural language interface for visual data
exploration within a dataflow system. IEEE Transactions on Visualization and
Computer Graphics, 26(1), 2020.

https://cloud.google.com/dialogflow/docs/concepts
https://www.gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers/
https://www.gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers/
https://dx.doi.org/10.5281/zenodo.3662711

	Abstract
	1 Introduction
	2 Background
	3 PerformoBot
	3.1 Modeling Conversations
	3.2 Implementation of PerformoBot

	4 User Study
	4.1 Study Design
	4.2 Participants
	4.3 Procedure
	4.4 Data Collection

	5 Results
	5.1 RQ1: How does PerformoBot help participants to create and execute a load test?
	5.2 RQ2: How do participants perceive PerformoBot and interact with it?
	5.3 RQ3: What educational effect does PerformoBot have on the participants?
	5.4 RQ4: How does the interaction with PerformoBot depend on the knowledge and experience of the participants?
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion
	References

