
Generating Accurate and Compact Edit Scripts
using Tree Differencing

Veit Frick∗, Thomas Grassauer∗, Fabian Beck†, Martin Pinzger∗
∗Alpen-Adria-Universität Klagenfurt †University of Duisburg-Essen

Email: {veit.frick, thomas.grassauer, martin.pinzger}@aau.at, fabian.beck@paluno.uni-due.de

Abstract—For analyzing changes in source code, edit scripts
are used to describe the differences between two versions of a
file. These scripts consist of a list of actions that, applied to the
source file, result in the new version of the file. In contrast to
line-based source code differencing, tree-based approaches such
as GumTree, MTDIFF, or ChangeDistiller extract changes by
comparing the abstract syntax trees (AST) of two versions of a
source file. One benefit of tree-based approaches is their ability
to capture moved (sub)trees in the AST. Our approach, the
Iterative Java Matcher (IJM), builds upon GumTree and aims at
generating more accurate and compact edit scripts that capture
the developer’s intent. This is achieved by improving the quality
of the generated move and update actions, which are the main
source of inaccurate actions generated by previous approaches.
To evaluate our approach, we conducted a study with 11 external
experts analyzed the accuracy of 2400 randomly selected edit
actions. Comparing IJM to GumTree and MTDIFF, the results
show that IJM provides better accuracy for move and update
actions and is more beneficial to understanding the changes.

Index Terms—change extraction, tree differencing, abstract
syntax trees, software evolution

I. INTRODUCTION

Edit scripts describe the differences between two versions of
a source code file. Such scripts consist of a list of actions that,
when applied to a given source code file, correctly transfers
it from one version of that file to another. Version control
systems, such as git [1], often provide tools like diff. diff
and its variations are based on Myers differencing algorithm
[2] and compute edit scripts on a line-based granularity.
This allows the users to view which lines have changed by
presenting inserted and deleted lines. While such edit scripts
are quickly generated and provide an overview, they suffer
from two problems: Firstly, they are restricted to insert and
delete actions and do not take updated or moved code into
account. Secondly, their line-based structure is coarse grained
and does not consider syntax information.

To solve these issues, approaches such as ChangeDis-
tiller [3], GumTree (GT) [4], and MTDIFF (MTD) [5] compare
the ASTs parsed from the source code files instead of their
textual representation. This allows the algorithms to refine the
granularity down to the level of single nodes in the AST. A
small change, like an added parameter in a method call, does
now show as an inserted node in the AST and not as a new line
of text. Additionally, moved subtrees are taken into account,
for instance to detect a change in statement order.

Such fine grained edit scripts can be used as foundation for
higher level applications or further research. For example, GT

or an adaption of it is used in [6] for API code recommenda-
tion, in [7] for analyzing changes in Maven build files, in [8]
for automated program repair, and in [9] for discovering bug
patterns in Javascript. ChangeDistiller is used to detect non-
essential modifications in source-code [10] and to automate
repetitive edits [11]. For these approaches to work best, it is
important to have accurate edit scripts.

Existing state-of-the-art approaches, namely GT and MTD,
generate edit scripts that are correct in the sense of transform-
ing one AST into another. However, in a manual investiga-
tion, we found that those edit scripts can consist of actions,
especially move and update actions, that can be classified as
inaccurate. Consider an edit script where every node of the
original AST is deleted and every node of the new AST is
inserted. This edit script always correctly transfers the original
AST into the new AST, even if both ASTs are exactly the
same. The actions of such an edit script would be correct
but not accurate. For this paper we propose the following
definition of an accurate edit action: An accurate action has
to fulfill all of the following three criteria:

1) The action has to be comprehensible: why did the ap-
proach match the given nodes?

2) The action has to be helpful: did the action help to
further the understanding of the changes occurring in the
revision?

3) There can be no simpler solution: is there no comprehen-
sible and helpful way to describe the change with fewer
actions?

Applying GT and MTD to 307,081 Java source file revisions
and manually analyzing a random sample of 2400 edit actions,
we found that over 55% of GT’s and over 81% of MTD’s
generated move and update actions are inaccurate according
to our definition given above. We argue that such a high
misclassification rate significantly impacts the understanding
of large source code changes and in particular of moved and
updated code.

With IJM we aim to reduce this misclassification rate and
to generate edit scripts that are easier to understand and
better reflect the original developer’s intent. The improvements
of IJM include partial matching, name-aware matching, and
merging name nodes. Partial matching decreases the amount
of nodes that are matched between different methods. Name-
aware matching takes the names and values of nodes into
account. Merging name nodes decreases the AST size by

merging some node types with their respective simple name
nodes.

We evaluate IJM by comparing it to two state-of-the-art
approaches, GT and MTD, answering the following four
research questions.
RQ1: To which extent does IJM change the edit script size?
RQ2: What is the runtime of IJM to produce the edit scripts?
RQ3: To which extent does IJM reduce the misclassification

rate of move and update actions?
RQ4: Can IJM be considered more helpful in terms of under-

standing the changes occurring in a revision?
The results show that IJM provides significantly better

accuracy for move and update actions and is more beneficial
to understanding the occurring changes. Also, IJM shows no
increase of runtime or edit script size.

The remainder of the paper is organized as follows: Section
II introduces AST differencing and points out the shortcom-
ings of GT and MTD. Section III presents IJM and Section
IV reports the results of its evaluation with 10 Java open-
source projects. Section V discusses IJM’s limitations and
possible threats to validity of our results. Section VI gives an
overview of the related work and, finally, Section VII draws
the conclusions and discusses future work.

II. AST DIFFERENCING

ASTs are a tree-based representation of source code used
by compilers, for example, in semantic analysis. ASTs consist
of nodes with the following properties:

• A parent node: with the exception of the root node, every
node has a parent.

• A label: the label represents the type of a node (e.g.,
method declaration).

• A value: the value describes the content information of a
node (e.g., name of a class or method) and can be null.

ASTs can be of different granularity. For instance, a node
could be as coarse as a whole statement or as fine grained as a
single literal. For our purposes a finer granularity is preferable,
since it allows the extraction of a detailed edit script. To derive
an edit script between two different ASTs, most algorithms
share the same two-steps approach. In the first step (matching)
the algorithm matches similar nodes from both ASTs. A node
can only belong to one match and only nodes with the same
label can be matched. In the second step, differencing, an edit
script is generated based on the matched and not matched
nodes. There are optimal algorithms for the second step, such
as presented by Chawathe et al. [12]. Therefore, we focus
solely on the matching step in this paper.

The GT algorithm performs the matching in two phases:
top-down and bottom-up. First, in the top-down phase, GT
searches for isomorphic subtrees in both ASTs. The second
phase, the bottom-up matching, takes the detected isomor-
phic subtrees as input. It matches parent nodes that share a
significant number of matching descendants (controlled by
three thresholds). GumTree then tries to match previously
unmatched descendants of those nodes.

In contrast to GumTree, MTD is an AST differencer based
on the approach of ChangeDistiller. It incorporates five op-
timizations as presented by Dotzler et al. in [5]. First, the
identical subtree optimization reduces the matching problem
by removing unchanged subtrees from the ASTs before apply-
ing a matching algorithm. This optimization is also used by
GT. The other four optimizations all try to detect more moves
to shorten the edit script. As shown by our manual analysis,
this works for small changes, but leads to unnecessary move
actions in the case of larger changes.

The following example, taken from the Apache Commons
Lang project on GitHub, illustrates some of the problems of
GT and MTD and shows some of the improvements provided
by IJM. In Figures 1, 2, and 3, two consecutive versions of the
UnescapeUtils class are shown. The changes introduced
in the example (see Figure 1) are:

1) The static field UNESCAPE_JAVA_CTRL_CHARS is in-
serted (line 2).

2) UNESCAPE_JAVA_CTRL_CHARS is added as argument
to the AggregateTranslator constructor call (line
15).

3) Five of the String arrays are moved from the
UNESCAPE_JAVA field (lines 10–14) to the
UNESCAPE_JAVA_CTRL_CHARS field (lines 5–9).

1. public class UnescapeUtils {
2. public static final CharSequenceTranslator

UNESCAPE_JAVA =
3. new AggregateTranslator(
4. new UnicodeUnescaper(),
5. new LookupTranslator(
6. new String[][] {
7. {"\\\\", "\\"},
8. {"\\\"", "\""},
9. {"\\'", ""},
10. {"\\r", "\r"},
11. {"\\f", "\f"},
12. {"\\t", "\t"},
13. {"\\n", "\n"},
14. {"\\b", "\b"},
15. {"\\", ""}
16. })
17.);
18. // ...
19. }

1. public class UnescapeUtils {
2. public static final CharSequenceTranslator

UNESCAPE_JAVA_CTRL_CHARS =
3. new LookupTranslator(
4. new String[][] {
5. {"\\b", "\b"},
6. {"\\n", "\n"},
7. {"\\t", "\t"},
8. {"\\f", "\f"},
9. {"\\r", "\r"}
10. });
11.
12. public static final CharSequenceTranslator UNESCAPE_JAVA =
13. new AggregateTranslator(
14. new UnicodeUnescaper(),
15. UNESCAPE_JAVA_CTRL_CHARS,
16. new LookupTranslator(
17. new String[][] {
18. {"\\\\", "\\"},
19. {"\\\"", "\""},
20. {"\\'", "'"},
21. {"\\", ""}
22. })
23.);
24. // ...
25. }

DELETE

UPDATE

INSERT

MOVE

Fig. 1. Edit script generated with IJM. The highlighted parts show the
differences between the two versions of the source file implementing the class
UnescapeUtils of Apache’s Commons Lang library.

The edit script for IJM, depicted in Figure 1, accurately
represents all the changes listed before. In contrast, the
edit script generated by GT is depicted in Figure 2, shows
notable differences compared to Figure 1. GT matches the
field UNESCAPE_JAVA from the original version with the
field UNESCAPE_JAVA_CTRL_CHARS from the new version
instead of UNESCAPE_JAVA. Through this inaccurate match,
several additional edit actions are produced, such as the
updates of the String literals in lines 7 to 14 of Figure 2.
This is due to the lack of name awareness in GT’s bottom-up
phase.

1. public class UnescapeUtils {
2. public static final CharSequenceTranslator

UNESCAPE_JAVA =
3. new AggregateTranslator(
4. new UnicodeUnescaper(),
5. new LookupTranslator(
6. new String[][] {
7. {"\\\\", "\\"},
8. {"\\\"", "\""},
9. {"\\'", ""},
10. {"\\r", "\r"},
11. {"\\f", "\f"},
12. {"\\t", "\t"},
13. {"\\n", "\n"},
14. {"\\b", "\b"},
15. {"\\", ""}
16. })
17.);
18. // ...
19. }

1. public class UnescapeUtils {
2. public static final CharSequenceTranslator

UNESCAPE_JAVA_CTRL_CHARS =
3. new LookupTranslator(
4. new String[][] {
5. {"\\b", "\b"},
6. {"\\n", "\n"},
7. {"\\t", "\t"},
8. {"\\f", "\f"},
9. {"\\r", "\r"}
10. });
11.
12. public static final CharSequenceTranslator UNESCAPE_JAVA =
13. new AggregateTranslator(
14. new UnicodeUnescaper(),
15. UNESCAPE_JAVA_CTRL_CHARS,
16. new LookupTranslator(
17. new String[][] {
18. {"\\\\", "\\"},
19. {"\\\"", "\""},
20. {"\\'", "'"},
21. {"\\", ""}
22. })
23.);
24. // ...
25. }

DELETE

UPDATE

INSERT

MOVE

Fig. 2. Edit script generated with GT for the same revision as in Figure 1.

1. public class UnescapeUtils {
2. public static final CharSequenceTranslator

UNESCAPE_JAVA =
3. new AggregateTranslator(
4. new UnicodeUnescaper(),
5. new LookupTranslator(
6. new String[][] {
7. {"\\\\", "\\"},
8. {"\\\"", "\""},
9. {"\\'", ""},
10. {"\\r", "\r"},
11. {"\\f", "\f"},
12. {"\\t", "\t"},
13. {"\\n", "\n"},
14. {"\\b", "\b"},
15. {"\\", ""}
16. })
17.);
18. // ...
19. }

1. public class UnescapeUtils {
2. public static final CharSequenceTranslator

UNESCAPE_JAVA_CTRL_CHARS =
3. new LookupTranslator(
4. new String[][] {
5. {"\\b", "\b"},
6. {"\\n", "\n"},
7. {"\\t", "\t"},
8. {"\\f", "\f"},
9. {"\\r", "\r"}
10. });
11.
12. public static final CharSequenceTranslator UNESCAPE_JAVA =
13. new AggregateTranslator(
14. new UnicodeUnescaper(),
15. UNESCAPE_JAVA_CTRL_CHARS,
16. new LookupTranslator(
17. new String[][] {
18. {"\\\\", "\\"},
19. {"\\\"", "\""},
20. {"\\'", "'"},
21. {"\\", ""}
22. })
23.);
24. // ...
25. }

DELETE

UPDATE

INSERT

MOVE

Fig. 3. Edit script generated with MTD for the same revision as in Figure 1.

The result generated by MTD, as depicted in Figure 3, is
closer to the one by IJM but exemplifies a problem of MTD.
UNESCAPE_JAVA_CTRL_CHARS is correctly detected as
new field, but many nodes that are still present in the
UNESCAPE_JAVA field declaration are moved to the new field
declaration, introducing move and insertion edits. For instance,
the modifier public is moved from UNESCAPE_JAVA to
UNESCAPE_JAVA_CTRL_CHARS and the modifier public
for the new UNESCAPE_JAVA is detected as insert.

The results of this small example show the main problem
of GT and MTD: creating accurate move and update actions.
Furthermore, MTD suffers from an additional problem – as
stated by Dotzler et al. [5] it has problems processing large
files whose ASTs contain more than 20,000 nodes.

III. IJM APPROACH

Our approach is based on the GT approach [4] and aims
at improving the matching phase. Like GT and MTD, we
use the existing implementation of the algorithm by Chawathe
et al. [12] to create the final edit scripts. For improving the
matching of AST nodes and subtrees, we add the following

three matching strategies: 1) partial matching, 2) name-aware
matching, and 3) merging of name nodes. In the following,
we describe each matching strategy in detail.

A. Partial Matching

As shown in the previous section, both, GT and MTD, have
difficulties accurately detecting moved and updated source
code. Therefore, the main goal of IJM is to reduce the
number of inaccurately classified moves and updates without
increasing the misclassification rate for inserts and deletes.
With partial matching we restrict the scope for the matching
to selected parts of the source code. As we focus on Java
source code, these parts are: import statements, type declara-
tions, enumeration declarations, method declarations, and field
declarations.

Each such part is represented by a subtree in the AST. Each
of these subtrees has their own root node, referred to as subtree
root node (SRN) to avoid confusion with the root node of the
entire AST. We assume that most of the changes happen within
such a subtree and only few changes happen between them.
For instance, the source code of a method is more likely to
be changed and moved within the same method. Furthermore,
source code from a field declaration is not likely to be moved
to a method declaration.

The partial matching approach is therefore to divide the
AST into smaller parts that are individually matched. IJM
is built of different matchers. A matcher takes two ASTs
or subtrees as input and outputs a set of matched nodes.
Composite matchers are collections of matchers that are ap-
plied subsequently. IJM itself is a composite matcher. General
matchers can operate on any kind of AST while partial
matchers address specific parts of the AST.

Figure 4 shows an overview of the matchers used by
IJM and their configuration. Furthermore, it also shows the
sequence (from left to right) in which the various matchers are
applied. With partial matching we aim at identifying correct
SRN node pairs to generate more accurate and compact edit
scripts. In the following, partial matching is detailed, then each
matcher is described separately.

Every partial matcher takes the following input: the source
and destination ASTs, the mapping of all (previously) matched
nodes, a pruning condition, and an inner matcher. It can
additionally have a subtree matcher and a subtree pruning
condition. As a result, each partial matcher adds the newly
matched nodes to the list of previously matched nodes. The
following three steps are performed by a partial matcher:

1) Pruning: This first step generates copies of the source
and destination ASTs used by the partial matcher and
removes all nodes from them that do not match the given
pruning condition. Note, each partial matcher must spec-
ify such a condition. Pruning conditions can make use
of all properties modeled in the AST such as node type,
node position, children and parents. The field declaration
matcher described below, for example, prunes all non-
root nodes that are children of type declaration nodes
and that are not field declaration nodes themselves. In

Fig. 4. Overview of the matchers used by IJM and the sequence (from left to right) of their application to the source and destination ASTs.

addition to the nodes that fit the condition, nodes that
have already been matched by any previous matcher are
also removed from the trees.

2) Matching: In the second step, the reduced ASTs are
processed by an inner matcher. This can be any matcher
and has to be specified in the matcher configuration.
The matched nodes are then added to the mapping of
all matched nodes of the original AST. If no further
configuration is provided, this set represents the final
result of the matcher. If subtree matching is enabled for
a partial matcher, the algorithm continues with Step 3.

3) Subtree Matching: This phase matches the subtrees of
the SRNs that have been matched in the previous step.
Again, the specific matcher used has to be specified in
the configuration. Most partial matchers use a variant of
GumTree to match subtrees. All nodes matched in this
process are added to the mapping of all matched nodes
of the original AST.

IJM consists of a list of different matchers that are shown
in Figure 4. In the following, we describe each matcher in the
sequence of their application and its configuration.

• Identical Subtree Matcher: This general matcher is also
used by GT and MTD and is described by Dotzler et al.
[5]. It matches subtrees that exist in an identical form in
both, the source and destination ASTs. It is not a partial
matcher and therefore capable of and also used by IJM for
detecting changes in the whole AST. This first matcher
reduces the number of nodes that need to be processed
by all matchers that are executed afterwards.

• Identical Imports Matcher: This matcher is a Java specific
matcher that matches import statements. Any import
statement that exists in the source as well as in the
destination AST is matched. Similar to partial matchers,
nodes that do not represent import statements are ignored.
However, the identical imports matcher is not a partial
matcher since no inner matcher can be specified.

• Inner Type Matcher: This is a partial matcher. The
pruning condition of this partial matcher ensures that only
subtrees of inner (non-anonymous) classes are processed.
It uses the Partial Inner Matcher, a simplified version
of GT detailed later, as inner matcher. If matching inner
class declarations are found, the corresponding subtrees
are processed using subtree matching as described in Step
3 before. This matcher uses IJM recursively as subtree
matcher.

• Inner Enum Matcher: The inner enum matcher works

similar to the inner type matcher. Instead of inner class
nodes, enumeration classes declared within a Java class
are processed by this matcher. The Partial Inner Matcher
is used as inner matcher and the Name-Aware GumTree
is used as subtree matcher.

• Method Matcher: This matcher processes all methods
in the source and destination ASTs. As the majority of
changes can be found within method bodies, it is crucial
to correctly identify matching SRNs. The method matcher
is a composite matcher consisting of two partial matchers
applied subsequently: first, it attempts to match methods
only by their signature, then it attempts to match the
remaining methods by their signature and by their method
body.

• Signature-Based Method Matcher: This partial matcher
matches method declarations according to their signature.
All nodes that are not part of the method signature are
pruned. The Name-Aware GumTree (see Subsection III-C)
is configured as inner and as Subtree Matcher.

• Structure-Based Method Matcher: Method declarations
that have not been matched according to their signature
are matched according to their structure. This matcher
takes all nodes of the method declaration and body into
account. The Name-Aware GumTree is configured as
inner and as Subtree Matcher.

• Field Declaration Matcher: Any field that is declared
within a given class is processed by this matcher. In
contrast to the inner type and inner enum matcher, it
does not process the subtrees of field declaration nodes.
Instead, all field declaration subtrees are processed in a
single iteration and the resulting matches are included in
the final result.

• Class Declaration Matcher: This partial matcher is con-
figured to match changes that occurred in class declara-
tions. It uses the Partial Inner Matcher as inner matcher
and does not use subtree matching.

• Partial Inner Matcher: This composite matcher is only
used as inner matcher of partial matchers. It consists
of two general matchers: The Identical Subtree Matcher
described above and the Name-Aware BottomUp Matcher
that is a modification of the same bottom-up matcher used
by GT and is described below in Subsection III-C.

• Name-Aware GumTree: This composite matcher is a
modified version of GT. Just as the Partial Inner Matcher
it replaces the standard bottom-up matcher of GT with
the modified Name-Aware BottomUp Matcher described

below in Subsection III-C.
With partial matching, nodes can only be matched if their

SRNs have been matched. Moves between unmatched SRNs
can therefore not be detected. For instance, a move from a
method body to a different method body cannot be detected
by partial matching. But note, moves within the same method
body are detected. For the same reason, a partial matcher does
not detect moves between nodes that have different types of
SRNs, since those nodes cannot be matched. For example,
partial matchers are unable to detect source code that has
been moved from a method to a field declaration. However,
when software developers refactor existing code, such changes
are likely to happen. To address this specific problem and
allow IJM to detect these changes, IJM uses the Identical
Subtree Matcher before applying any partial matcher. This first
matcher allows to identify and match moved code blocks in
the source and destination ASTs.

B. Merged Name Nodes

Both, GT and MTD, run into problems with name nodes
in the AST. Name nodes are children of various other nodes
like method or type declarations containing the name of their
parent node as value. The problem is that GT and MTD can
match these name nodes with other name nodes having a
different parent. Both matchers, as well as IJM, do not allow
nodes of different types to be matched. However, since the
name nodes share the same type (simple name), they can be
matched even if their respective parents do not share the same
type. The name of a method can therefore be matched to the
name of a variable or class. Figure 5 provides an example
of such a match: the name node of the method declaration
foo(), that has been renamed to bar(), is (inaccurately)
matched with the new variable declaration foo.

1. public class Test {
2. public void foo() {
3. }
4. }

1. public class Test {
2. public void bar() {
3. int foo = 1;
4. }
5. }

Fig. 5. Example edit script generated using MTD where the name node foo
has been moved from a method parent to a variable parent.

To prevent this, IJM modifies the AST by merging the value
of name nodes with their respective parent nodes and deleting
the name nodes with redundant information. The benefit of
this modification is threefold: first, it prevents errors caused
by moving the name node away from the parent node by
forging an atomic node; second, it reduces the edit script size;
and third, it decreases the length of the AST and therefore
improves the runtime of our approach.

The tree on the left hand side of Figure 6 presents an excerpt
of the AST generated by GT and MTD from the source code of
the class UnescapeUtils shown in the Figures 1 to 3. The
marked nodes are of the simple name type that are removed or
merged with their respective parent nodes by IJM. The tree on
the right hand side of Figure 6 shows the AST for the same

source code created and used by IJM. The nodes that have
been merged with their name nodes are marked. For instance,
the simple name node UnescapeUtils is merged with its
class declaration node. Another example is the simple name
node of the static field UNESCAPE_JAVA that is merged with
its variable declaration node. Furthermore, the simple name
node LookupTranslator is deleted since it is already
represented by its parent node. Regarding this example, IJM
deleted 4 and merged 2 name nodes in the AST. This decreased
the size of the AST in this excerpt from 20 to 14 nodes.

C. Name-Aware Matching

During our manual analysis of the edit scripts output by GT
and MTD, we found several examples in which nodes with dif-
ferent names were inaccurately matched. Such an example is
presented in Figure 7 in which the nodes representing fields
and iterator, and the nodes representing isEmpty and
hasNext are matched. While the two method invocations
are structurally equivalent, they clearly differ semantically as
indicated by their different names. The resulting edit script
contains unnecessary move and update actions (instead of only
representing the change with one delete and one insert action).
The reasons for these matches are, that GT, in the bottom-up
phase, only uses the node type to determine whether or not two
nodes can be matched. Consequently, because the structure of
the subtrees of the if-condition and the node types are equal,
the nodes mentioned above are matched.

IJM addresses this problem by adding name-awareness to
the bottom-up phase of GT. This is realized by considering
the similarity of the names of the nodes in addition to their
node types. The similarity is computed using the weighted
Levenshtein distance [13]. We experimented with different
values and decided that two names are considered similar if
they have a distance of < 0.3. This similarity threshold is in-
troduced for nodes that represent: method declarations, method
invocations, enum declarations, enum constant declarations,
import declarations, and name nodes. Referring to the previous
example, IJM does not match the nodes representing fields
and iterator, and the nodes representing isEmpty and
hasNext. The result is an edit script where the condition of
the if statement is completely removed and replaced by a
new condition statement.

IV. EVALUATION

For the empirical evaluation of IJM we compared it to
GT and MTD. As described in Section III, IJM is based on
GT but adds partial matching, name-awareness, and works
on modified ASTs. For this evaluation we propose evaluating
four different criteria: Edit script size, Runtime, Edit action
accuracy, and Edit script helpfulness.

Dotzler and Philippsen [5] show that shorter edit scripts are
more helpful to understanding changes between revisions. We
therefore use edit script size as a metric. For the approaches to
be of practical use, they have to run in a reasonable amount of
time, thus we compare the runtime for matching and creating
the edit scripts for a revision. Edit action accuracy has been

Fig. 6. Tree on the left shows the excerpt of the AST generated by GT and MTD for the source code of the class UnescapeUtils (see Figure 1). Tree
on the right shows the same excerpt of the AST generated by IJM. Marked nodes represent simple name nodes that are merged or removed by IJM.

1. public class Test {
2. public void foo() {
3. if (! fields . isEmpty ()) {
4. //impl
5. }
6. }
7. }

1. public class Test {
2. public void foo() {
3. if (iterator . hasNext ()) {
4. //impl
5. }
6. }
7. }

Fig. 7. Example edit script generated using GT where the nodes representing
fields and hasNext, and isEmpty and hasNext are inaccurately
matched.

added to measure whether or not the single actions of an edit
script accurately depict the changes in a given revision. As
fourth criterium, we evaluate the helpfulness of complete edit
scripts to see if they further the understanding of the occurring
changes in a revision.

We use 10 well-known open source Java projects as data set
for the evaluation as can be seen in Table I. We chose these
projects to cover a broad bandwidth of projects of different
sizes, ranging from 269 to over 10,000 classes and from 1,327
to 17,948 commits. All projects are open-source and publicly
available from GitHub to ensure reproducibility. We ran the
three approaches IJM, MTD, and GT on all file revisions from
all non-merge commits of those 10 projects to generate the
edit scripts. 11,353 out of 392,492 (2.89%) revisions could
not be handled by MTD with our setup, since the process
ran out of memory (we ran MTD with dedicated 40 GB of
RAM). Neither GT nor IJM ran into this problem. To allow
for a fair comparison of the approaches, we excluded these
revisions from the data set. We also excluded any revisions
that have changes in JavaDoc (76,785), since IJM focuses on
source code changes and is not able to detect JavaDoc changes.
Using this process, we generated a total of 307,081 edit scripts
per approach. Note that IJM ran on the reduced AST whilst
GT and MT ran on the larger unmodified AST.

TABLE I
DESCRIPTIVE STATISTICS OF THE 10 JAVA OPEN SOURCE PROJECTS USED

IN THE EVALUATION

Poject Commits Revisions LOC Methods Classes
ActiveMQ 7,413 44,829 405,747 41,730 4,940
Commons IO 1,327 4,443 29,267 44,448 269
Commons Lang 3,742 11,034 74,477 51,062 539
Commons Math 5,010 32,132 186,566 65,695 1,646
JDT Core 3,658 26,884 1,400,678 137,155 7,842
HBase 17,948 89,119 1,116,946 254,346 8,491
Hibernate ORM 10,097 63,393 643,299 321,547 10,758
Hibernate Search 6,002 87,465 137,468 335,372 2,576
JUnit 4 1,376 6,276 28,749 339,376 1,145
Spring Roo 4,467 26,917 106,454 347,608 998
All 61,040 392,492 4,129,651 1,938,339 39,204

TABLE II
MEDIAN AND MAXIMUM EDIT SCRIPT SIZE PER PROJECT AND APPROACH

Project Median Maximum
GT MTD IJM GT MTD IJM

ActiveMQ 13 13 10 20,171 20,173 15,313
Commons IO 10 10 8 2,273 3,276 1,847
Commons Lang 13 13 10 4,494 4,494 3,912
Commons Math 7 8 6 8,332 8,334 6,442
JDT Core 17 18 14 30,532 30,552 22,344
HBase 11 11 8 76,057 76,059 59,932
Hibernate ORM 9 11 6 27,605 27,607 20,250
Hibernate Search 8 8 6 2,543 2,539 1,947
JUnit 4 13 14 10 2,000 2,002 1,530
Spring Roo 13 13 10 3,830 4,160 3,093
All 12 12 9 76,057 59,932 76,059

A. Edit Script Size

Existing work on tree differencing, such as [4], [5], and
[14], argue that smaller edit scripts are better in terms of un-
derstandability. Table II presents the results in terms of median
and maximum edit script size per project and approach. The
minimum edit script size for each approach and project is 1.

When used on the 307,081 revisions from the data set, IJM
produces edit scripts, whose median size is 9. The median

edit scripts size of GT and MTD is 12. Looking at the values
per project, we observe that IJM produces shorter median
edit scripts for all of the 10 Java projects. In 95.22% of
all evaluated revisions, IJM produced the smallest edit script
either alone or shared first place with one of the other two
approaches. This holds true for 53.08% of all revisions for
GT and for 54.53% respectively for MTD.

Based on these numbers, we checked whether the differ-
ences in the median values are statistically significant using
the Wilcoxon signed rank test (α < 0.01) and Cliff’s Delta
d [15]. We used the Wilcoxon singed rank test and Cliff’s
Delta since the sizes of the edit scripts are non-normal dis-
tributed. Concerning Cliff’s Delta, the effect size is considered
negligible for d < 0.147, small for 0.147 ≤ d < 0.33, medium
for 0.33 ≤ d < 0.47, and large for d ≥ 0.47 [16]. The p-
values of the Wilcoxon tests for comparing the size of all edit
scripts of GT and IJM and for MTD and IJM are < 2.2e−16.
The effect size d over all edit scripts between GT and IJM is
0.084 and between MTD and IJM is 0.102. Both are therefore
considered negligible. Performing the comparison of the edit
script sizes per project, we obtained p-values < 6.01e−169 for
the Wilcoxon tests. The corresponding values for the Cliff’s
delta except one are all < 0.147. Only in the case of comparing
MTD and IJM on Hibernate ORM, Cliff’s delta is 0.172 thus
considered small. This shows that while the median sizes of the
edit scripts output by the three approaches differ significantly,
the differences can be considered negligible and at most small.

Based on these results, the research question RQ1 ”To which
extent does IJM change the edit script size?” can be answered
as follows: IJM, run on the reduced AST, reduces the median
edit script size of GT and MTD by 3 edits from 12 to 9.

B. Runtime

Approaches that produce small and accurate edit scripts
might still not be the best option to use if they do not complete
in a practicable amount of time. We therefore evaluate and
compare the runtime of IJM, GT, and MTD. For all three
approaches we measure and compare the following data:
Matching time (MT), Action generation time (AGT), Total
time for revision (TTR).

MT describes the time used to solely match all nodes of a
given revision, not including parsing the two ASTs. For IJM
this includes the time used by the identical subtree matcher as
well as all partial matchers. AGT describes the time used to
solely generate the set of edit actions after matching the nodes
of a given revision. TTR describes the total time being used to
process a revision. This includes the time used to generate the
AST, the MT, the AGT, and the possible overhead such as the
AST modification of IJM. All values are given in milliseconds
(ms).

To generate comparable data, we ran 3 iterations of every
approach, each on a separate PC, on every revision from the
data set. We enforced an artificial time limit of 3 minutes per
revision. If any approach ran out of memory or hit the time
limit the revision was excluded from this part of the evaluation
for all approaches. This only happened in 47 cases, all by

TABLE III
MEDIAN AND MAXIMUM RUNTIME FOR THE MATCHING (MT) IN MS PER

REVISION AND APPROACH

Project Median Maximum
GT MTD IJM GT MTD IJM

ActiveMQ 2.67 3.00 2.00 3,960.00 11,063.00 1,350.33
Commons IO 2.33 3.67 2.33 361.00 6,106.33 629.67
Commons Lang 4.67 10.00 4.67 930.33 17,883.00 240.67
Commons Math 2.67 3.67 2.67 9,881.00 19,633.00 705.67
JDT Core 6.33 16.67 6.00 42,208.33 144,270.67 8,165.67
HBase 14.00 26.33 7.00 3,177.00 133,944.33 9,941.67
Hibernate ORM 1.33 1.33 1.33 1,121.00 27,131.67 4,164.33
Hibernate Search 2.33 2.00 2.00 2,347.67 48,007.67 3,194.67
JUnit 4 2.00 2.00 1.67 466.00 294.67 1,819.00
Spring Roo 6.00 5.00 3.33 1,995.33 8,900.33 2,714.00
All 4.00 4.33 3.00 42,208.33 144,270.67 9,941.67

TABLE IV
MEDIAN AND MAXIMUM RUNTIME FOR THE ACTION GENERATION (AGT)

IN MS PER REVISION AND APPROACH

Project Median Maximum
GT MTD IJM GT MTD IJM

ActiveMQ 0.67 0.67 0.33 62.33 123.67 45.67
Commons IO 0.67 0.67 0.67 52.00 47.67 34.33
Commons Lang 1.67 1.67 1.00 157.67 100.00 108.00
Commons Math 0.67 0.67 0.67 385.33 405.67 370.00
JDT Core 1.67 1.67 1.33 6,277.00 5,690.00 6,160.33
HBase 1.33 1.67 1.00 1,728.67 3,403.67 1,127.33
Hibernate ORM 0.33 0.33 0.33 117.33 245.00 68.67
Hibernate Search 0.33 0.33 0.33 29.00 36.33 17.00
JUnit 4 0.33 0.33 0.33 14.33 16.33 10.67
Spring Roo 0.67 0.67 0.67 118.00 119.67 88.33
All 0.67 0.67 0.67 6,277.00 5,690.00 6,160.33

MTD. This process generated a total of 921,102 data points for
each approach. All three PCs used for the evaluation have the
exact same specification.1 The results of the runtime evaluation
are shown in Tables III–V. Table III depicts the median
and maximum runtime of the matching part (MT) of the
three approaches. Table IV depicts the median and maximum
runtime of the action generation part (AGT) and Table V
depicts the total runtime (TTR) of the three approaches. The
median values for MT show that IJM outperforms GT in 6 and
ties with it in 4 out of 10 projects. In comparison to MTD, IJM
outperforms it in 8 out of 10 projects and ties in 2. The median

1Dell OptiPlex 9020 Ultra Small Form Factor, Intel Core i5-4590S (Quad
Core, 6MB, 3.00GHz w/HD4600 Graphics), 16GB RAM

TABLE V
MEDIAN AND MAXIMUM TOTAL RUNTIME (TTR) IN MS PER REVISION

AND APPROACH

Project Median Maximum
GT MTD IJM GT MTD IJM

ActiveMQ 6.00 6.00 5.00 4,007.00 11,230.66 1,387.33
Commons IO 6.67 8.00 6.33 458.00 6,233.00 708.66
Commons Lang 13.33 20.00 12.00 957.67 18,104.33 809.00
Commons Math 7.00 8.00 6.33 9,891.33 20,115.67 1,196.33
JDT Core 15.00 26.00 13.00 42,329.00 145,095.67 8,448.66
HBase 22.66 36.33 14.33 4,171.33 134,404.33 10,007.00
Hibernate ORM 3.67 3.33 3.33 1,158.33 27,365.67 4,241.33
Hibernate Search 5.33 4.67 4.00 2,364.67 48,025.00 3,208.00
JUnit 4 4.67 4.33 4.00 564.33 567.33 1,823.33
Spring Roo 11.00 9.00 7.00 2,032.00 9,029.00 2,784.00
All 8.33 9.00 6.67 42,329.00 145,095.67 10,007.00

values for AGT show that the three matchers behave similarly.
In 4 out of 10 projects IJM outperforms GT and MTD and ties
in 6. The median values for TTR show that IJM outperforms
GT and MTD in 9 out of the 10 projects. IJM reduces the
median runtime from 8.33 ms and respectively 9 ms to 6.67
ms. Only in the Hibernate ORM project IJM and MTD tie
with a median TTR of 3.33 ms.

We checked whether the differences in the median values
are statistically significant using the Wilcoxon signed rank
test (α < 0.01) and Cliff’s Delta d [15]. The p-values of
the Wilcoxon tests for comparing the TTR over all revisions
of all projects between GT and IJM and between MTD and
IJM are both < 2.2e−16. The effect size between GT and IJM
is 0.06 and is considered negligible. The effect size between
MTD and IJM is 0.116 and also considered negligible. We
obtained similar results for comparing the results for MT and
AGT over all revisions and all projects. All the p-values show
a significant difference in the median values while the values
of Cliff’s delta show that these differences are negligible.
Computing the statistics for each project, we found small effect
sizes in MT and TTR for Commons Lang, JDT Core, and
HBase between IJM and MTD. Furthermore, for HBase we
found also a small effect size for AGT between IJM and MTD,
as well as a small effect size for MT between IJM and GT.
The values of Cliff’s delta for all other projects showed a
negligible effect. All computed statistics are significant with
p-values < 5.2e−13.

Hence, the research question RQ2 ”What is the runtime of
IJM to produce the edit scripts?” can be answered as follows:
IJM, run on the reduced AST, reduces the median runtime to
process a single revision compared with GT and MTD from
8.33ms and respectively 9ms to 6.67ms.

C. Edit Action Accuracy

Previous research, such as [5], has mostly been focused on
edit script size and runtime to evaluate matching approaches.
In some studies, the quality of the generated edit scripts has
been evaluated but the data set was highly constrained (e.g.,
only one change per script) [4] or the data set was small
[3]. While an evaluation of edit script size and runtime is
absolutely necessary, we add the level of edit action accuracy
to the evaluation to get a better understanding of the generated
edit scripts’ quality.

Evaluating the quality of an edit script is no trivial task
– some actions of an edit script can be beneficial for the
understanding of the underlying change in the file while other
actions in the same revision might be misleading. Therefore,
we evaluated both, whole edit scripts (Section IV-D) as well
as the accuracy of single edit actions. For this evaluation
we randomly selected 2400 single edit actions from our data
source (200 for each of the 4 action types and for each
approach).

All actions have been independently classified as either
accurate or inaccurate according to the definition given in
Section I by two evaluators that are also co-authors of this
paper and know the details of the three matching approaches.

TABLE VI
MISCLASSIFICATION RATE PER MATCHER. MR DENOTES THE

MISCLASSIFICATION RATE, NOA DENOTES THE NUMBER OF ACTIONS

Action GT MTD IJM
MR NoA MR NoA MR NoA

MOVE 58.2% 720,303 81.5% 3,121,607 43.5% 510,250
UPDATE 40% 938,288 37% 759,177 17% 503,423
INSERT 5.5% 12,225,111 6% 9,642,897 5.5% 10,236,135
DELETE 12% 5,478,973 11% 4,038,471 11.5% 5,021,193
Relative MR: 10.98% 21.91% 8.9%

If both evaluators classified a given action as either accurate
or inaccurate the action was classified as such. All cases
where the two evaluators differed in their classification were
discussed in a second iteration. This second iteration resulted
in no disagreements.

The results of the classification are depicted in Table VI.
They show that especially move and update actions pose a
problem to all three approaches. As shown by the values for
MOVE, more than half of GT’s and more than 80% of MTD’s
move actions have been classified as inaccurate, while IJM
manages to reduce this number to 43.5%. The IJM approach
also improves the accuracy of update classifications without
increasing the misclassification rate of insert or delete actions
compared to both GT and MTD. However, there is a vast
imbalance concerning the distribution of the action types. For
example, only 3.7% (GT) or 3.1% (IJM) of all actions are
moves. MTD on the other hand generates 17.8% moves and
shows the highest misclassification rate for them. Thus, it is
important to put the misclassification rate in relation with
the distribution of edit action types. The resulting relative
misclassification rate of IJM is reduced to 8.9% compared
to GT’s 10.98% and MTD’s 21.91%.

Based on these results we can answer RQ3 ”To which
extent does IJM reduce the misclassification rate of move
and update actions?” with: Compared to GT and MTD, IJM
reduces the misclassification rate of move actions by 14.7%
and respectively 38.0%. The misclassification rate of update
actions is reduced by 23% compared to GT and by 20%
compared to MTD.

D. Edit Script Helpfulness

Since the previous evaluation has been performed by two
co-authors of this paper, it could involuntarily be biased.
Therefore, we conducted a second experiment with 11 inde-
pendent external experts evaluating the helpfulness of the edit
scripts in terms of understanding the changes present in the
revision. All participants of the study are professional software
developers or researchers holding at least a masters degree in
computer science. All of them work with versioning systems
and know the textual diff representations used by such systems.

The experiment was set up as follows: we randomly selected
3 revisions from every project in the data source. Each revision
had to consist of between 20 and 100 edit actions and include
at least one move or update action. We also excluded all
revisions with no difference in the edit scripts between the
approaches. Each participant was presented with 10 revisions
(one per project) and the three corresponding edit scripts

generated by GT, MTD, and IJM. We used an online evaluation
tool, that visualizes the four types of edit actions (similar to
Figures 1–3). In the case of move and update actions, this
tool allows the user to view the corresponding nodes in the
original and modified version of the source code to see which
nodes have been matched. We anonymized the approaches and
randomized the order in which the edit scripts were shown.
All participants were given a short introduction into how to
use the evaluation tool. Then, for each revision, we asked the
participants to rank the three edit scripts according to their
helpfulness in terms of understanding the changes present in
the revision. Each revision has been ranked by at least 3 and
maximum 5 experts resulting in 110 rankings.

Table VII shows how often each matcher has been ranked
first place per revision. It also shows how often all matchers
have been ranked first, second, and third place in total. IJM
ranks first in 49 out of 110 cases (44.5%) and for 18 out
of 30 revisions. In 13 out of these 18 revisions, IJM got
ranked sole first. For 5 revisions, GT was ranked sole first,
and MTD was ranked sole first for 7 out of the 30 revisions.
For 3 revisions, IJM was ranked first together with GT, for
1 revision IJM was ranked first with MTD, and finally, for
1 revision all three matchers were ranked first by one of the
participants. Comparing the counts for first, second, and third
place obtained for the three matchers with the Pearson’s Chi2

test results in a Chi2 of 9.55 with a p-value of 0.049. This
shows a dependency between rankings and the matcher. Since
the p-value is below 0.05 it is unlikely that the results occurred
by chance.

Based on these results, we answer research question RQ4
”Can IJM be considered more helpful in terms of understand-
ing the changes occurring in a revision?” with: our expert
based evaluation shows that they found IJM more helpful than
GT or MTD.

V. DISCUSSION

In the following, we discuss the implications of our findings
on research, the limitations of our approach, and threats to
validity.

A. Implications

As discussed in Section I, a wide variety of approaches
uses edit scripts as their basis. The results of our evaluation
presented in Section IV show that such existing approaches
and future applications should consider using IJM, because
it creates more accurate (Section IV-C) and more helpful
(Section IV-D) edit scripts without increasing the runtime or
edit script size compared to GT and MTD. We assume that the
differences in runtime and edit script size are due to merged
name nodes and reduced AST size and that GT and MTD
would therefore also profit from this approach. However, we
did not evaluate their accuracy when run on a reduced AST, as
we did not find any indications for a beneficial effect during a
manual review. It should also be noted that whether or not an
edit script can be considered accurate or helpful is depending
on the context. For this paper we focused on the developers

understanding of a change, other applications, such as clone
detection, might not consider the edit scripts generated by IJM
accurate. Additionally, future change extraction algorithms that
intend to create not only correct but better understandable
edit scripts should not set their sole focus on creating the
shortest edit script possible but should take the developer’s
intent into account. The evaluation proposed in Section IV-D is
not limited on being applied to IJM and can easily be adopted
to evaluate future approaches.

B. Limitations and Threats to Validity

One threat to validity for this research is that the two
evaluators of the edit action accuracy are also co-authors of
this paper. To mitigate this bias, we conducted an additional
experiment using 11 external experts, that did not have any
knowledge about the approaches compared. In addition, we
make the source code2 and dataset that we used for the
evaluation publicly available.3

Another threat concerns the generalizability of the results.
In it’s current state, IJM is limited to work only with Java
source code, even though its approach can be easily adopted
to fit other object-oriented programming languages. However,
no conclusions about it’s performance on other languages can
be drawn from this evaluation.

It is possible that the implementations of IJM, GT, or MTD
suffer from bugs. This is, however, not very likely, since none
of the manually evaluated edit scripts showed any indications
of bugs except the following shortcoming. During our analysis
we found a shortcoming in the generation of the ASTs that
affects the matching and generation of the edit scripts in all
three approaches. For instance, if y = a.bar(x); would be
changed to y = bar(a,x);, the AST created with Eclipse
JDT and used by all three approaches does not differentiate the
node types of "a". Both are considered simple name nodes.
Therefore the approaches produce wrong edit scripts in this
case. GT and MTD match both "a"s despite their semantic
differences, IJM produces no change in this specific case.
Investigating all revisions, we found that this shortcoming
affects at most 4.7% of the revisions and at most 0.3% of
all changes in our data set, therefore, we view our results as
sufficiently valid.

It is also possible that the performance problems of MTD
are due to a suboptimal implementation and not due to the
algorithm itself. The similarity thresholds for names in this
study have been set to 0.3 for IJM and to 0.3 for GT. GT
also implements a tree size threshold of 1,000 that has not
been modified. MTD’s leaf threshold has been set to 0.88,
the weight similarity to 0.37, and the weight position to less
than 0.0024. Neither the thresholds for GT nor for MTD have
been modified from their implementation found on GitHub
(https://github.com/GumTreeDiff/gumtree, https://github.com/
FAU-Inf2/treedifferencing).

2https://github.com/VeitFrick/IJM
3https://github.com/IterativeJavaMatcher/IJM Reproductionset

https://github.com/GumTreeDiff/gumtree
https://github.com/FAU-Inf2/treedifferencing
https://github.com/FAU-Inf2/treedifferencing
https://github.com/VeitFrick/IJM
https://github.com/IterativeJavaMatcher/IJM_Reproductionset

TABLE VII
RESULTS FROM THE 11 EXPERTS RANKING THE EDIT SCRIPTS OF 30 RANDOMLY SELECTED REVISIONS (R1–R30)

Approach Sum of first place rankings per revision Rank sum
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 1st 2nd 3rd

GT 2 1 0 3 3 2 1 1 0 1 0 0 0 1 1 0 0 3 1 0 0 1 2 2 1 1 2 0 1 0 30 39 41
MTD 0 1 3 1 0 0 3 0 2 1 2 1 2 1 0 0 1 0 2 1 1 0 0 0 3 2 1 0 2 1 31 39 40
IJM 2 3 0 1 0 2 0 2 2 2 3 2 1 1 2 4 3 1 0 3 4 2 1 2 0 1 0 3 0 2 49 32 29

VI. RELATED WORK

Extracting changes between two versions of a source file is
a problem that has been investigated by several researchers.
We divide this previous research into three categories: textual
or line-based differencing, tree-based differencing, and other
approaches.

A. Textual Differencing

Textual differencing algorithms, such as the famous GNU
diff, are based on the algorithms presented in [17] and [2], and
compare source code on a purely textual level. These algo-
rithms are capable of detecting inserted, deleted, and updated
lines of text. Some newer algorithms, such as presented by
Reiss in [18] and Canfora et al. in [19] are able to detect
moved lines as well. All these approaches have in common
that they do not use the syntax information contained in source
code. This hinders the exact classification of detailed changes
in source code, but in turn enables their application to any kind
of text and therefore these approaches are mostly language
independent.

B. Tree-Based Differencing

Unlike textual differencing, tree differencing does not com-
pare the text of the two versions of source code but uses
the underlying tree structure of source code to generate edit
scripts that transform the source AST into the destination
AST. There are many tree-based approaches generating edit
scripts comprised of insert, delete, and update actions, but
without move actions. Bille published a survey that provides
an overview on such tree edit distance algorithms [20].

The algorithm introduced by Chawathe et al. [12] is capable
of computing edit scripts containing update and move actions
based on trees generated from LaTeX source files. Optimal
algorithms, not considering moved subtrees, like RTED [21],
exist and run in O(n3). ChangeDistiller [3], presented by Fluri
et al., is a tool that uses a reduced AST to extract and classify
changes between two versions of a file using tree-differencing.

IJM itself builds upon GT [4] which uses AST differencing
and is inspired by the algorithm of Cobena et al. [22]. MTD,
short for Move Optimized Tree Differ, is another recent ap-
proach presented by Dotzler et al. [5] to optimize the GT and
other matching algorithms. It tries to decrease the size of its
generated edit scripts by increasing the number of moves but
runs into problems concerning runtime and misclassification
of move actions as we demonstrated in Section II.

Diff/TS [23] is another approach to generate edit scripts
from ASTs. It supports multiple languages and is able to detect
move actions. However, it has no evaluation in terms of quality

and its source code has not been made publicly available,
therefore it was not possible to include it in our evaluation.
Recently, Higo et al. proposed an algorithm extending GT
that also considers copy-and-paste actions in addition to insert,
delete, update, and move actions [14]. While this is a valuable
extension, it suffers from the same shortcomings as GT.

There are additional approaches, designed to work with a
specific programming language or family of languages. For
instance, VDiff [24] is designed to work with the hardware
definition language Verilog. It uses an approach, similar to
that of ChangeDistiller.

C. Other Approaches
Multiple other approaches use graphs to uncover differences

between source code files. For instance, JDiff [25] is a Java
specific tool that is based on enhanced control-flow graphs.
UMLDiff [26] works on UML models of software represented
in a graph structure. srcDiff [27] is a differencing approach
using an XML format that embeds syntactic information in
source code files [28]. Dex [29] uses abstract semantic graphs
to create edit scripts. FMDiff [30] is an approach implemented
with the EMF Compare framework to extract feature model
changes from the Linux kernel files. CSeR [31], [32] is an
AST based tool for clone differencing, it uses the same edit
actions as IJM but computes them by incrementally updating
changes between the clones.

VII. CONCLUSIONS

In this paper we presented IJM, an improved approach to
generate edit scripts from different file versions using tree
differencing. The improvements mainly focus on the matching
phase and include partial matching, name aware matching, and
merging name nodes. We evaluated and compared the accuracy
and helpfulness of IJM to the state of the art approaches GT
and MTD. A study with 2400 randomly selected edits shows
a higher accuracy for move and update actions without in-
creasing the misclassification rate for insert and delete actions
(Section IV-C). A study with 11 independent external experts
showed that they found IJM more helpful for understanding
the changes in a revision (Section IV-D). Furthermore, an
evaluation on 10 Java open source projects shows no increase
in edit script size (Section IV-A) and runtime (Section IV-B).

In future work, we plan to further improve the matching by
considering the type information of all name nodes. Further-
more, we plan to extend the taxonomy of ChangeDistiller to
consider detailed changes within statements.

ACKNOWLEDGEMENT

This work has been funded by the Austrian Science Fund
(FWF) under project number 2753-N33.

REFERENCES

[1] L. Torvalds and J. Hamano, “Git: Fast version control system,” URL
http://git-scm.com, 2010.

[2] E. W. Myers, “An O(ND) difference algorithm and its variations,”
Algorithmica, vol. 1, no. 1-4, pp. 251–266, Nov 1986.

[3] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall, “Change distilling:tree
differencing for fine-grained source code change extraction,” IEEE
Transactions on Software Engineering, vol. 33, no. 11, pp. 725–743,
2007.

[4] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14. New York, NY, USA: ACM, 2014, pp.
313–324.

[5] G. Dotzler and M. Philippsen, “Move-optimized source code tree differ-
encing,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’16, Sept 2016, pp. 660–
671.

[6] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig, “Api code recommendation
using statistical learning from fine-grained changes,” in Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’16. New York, NY, USA: ACM,
2016, pp. 511–522.

[7] C. Macho, S. Mcintosh, and M. Pinzger, “Extracting build changes
with builddiff,” in Proceedings of the 14th International Conference on
Mining Software Repositories, ser. MSR ’17. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 368–378.

[8] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury,
“A feasibility study of using automated program repair for introductory
programming assignments,” in Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE ’17. New York,
NY, USA: ACM, 2017, pp. 740–751.

[9] Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discovering bug patterns
in javascript,” in Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE ’16. New
York, NY, USA: ACM, 2016, pp. 144–156.

[10] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 351–360.

[11] N. Meng, M. Kim, and K. S. McKinley, “Lase: Locating and applying
systematic edits by learning from examples,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 502–511.

[12] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change detection in hierarchically structured information,” in Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’96. New York, NY, USA: ACM, 1996, pp. 493–
504.

[13] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions and reversals,” Soviet Physics-Doklady, vol. 10, pp. 707–710,
1966.

[14] Y. Higo, A. Ohtani, and S. Kusumoto, “Generating simpler ast edit
scripts by considering copy-and-paste,” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 532–
542.

[15] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, p. 494, 1993.

[16] R. J. Grissom and J. J. Kim, Effect Sizes for Research: A Broad Practical
Approach. Lawrence Erlbaum Associates, 2005.

[17] W. Miller and E. W. Myers, “A file comparison program,” Software:
Practice and Experience, vol. 15, no. 11, pp. 1025–1040, 1985.

[18] S. P. Reiss, “Tracking source locations,” in Proceedings of the 30th
International Conference on Software Engineering, ser. ICSE ’08. New
York, NY, USA: ACM, 2008, pp. 11–20.

[19] G. Canfora, L. Cerulo, and M. Di Penta, “Tracking your changes: A
language-independent approach,” IEEE Software, vol. 26, no. 1, pp. 50–
57, 2009.

[20] P. Bille, “A survey on tree edit distance and related problems,” Theoret-
ical Computer Science, vol. 337, no. 1-3, pp. 217–239, 2005.

[21] M. Pawlik and N. Augsten, “Rted: A robust algorithm for the tree edit
distance,” Proc. VLDB Endow., vol. 5, no. 4, pp. 334–345, Dec 2011.

[22] A. Marian, “Detecting changes in xml documents,” in Proceedings of
the 18th International Conference on Data Engineering, ser. ICDE ’02.
Washington, DC, USA: IEEE Computer Society, 2002, p. 41.

[23] M. Hashimoto and A. Mori, “Diff/ts: A tool for fine-grained structural
change analysis,” in Proceedings of the 2008 15th Working Conference
on Reverse Engineering, ser. WCRE ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 279–288.

[24] A. Duley, C. Spandikow, and M. Kim, “A program differencing algo-
rithm for verilog hdl,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’10. New
York, NY, USA: ACM, 2010, pp. 477–486.

[25] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A differencing algo-
rithm for object-oriented programs,” in Proceedings of the 19th IEEE
International Conference on Automated Software Engineering, ser. ASE
’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 2–13.

[26] Z. Xing and E. Stroulia, “Umldiff: An algorithm for object-oriented de-
sign differencing,” in Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’05. New
York, NY, USA: ACM, 2005, pp. 54–65.

[27] M. J. Decker, “srcdiff: Syntactic differencing to support software main-
tenance and evolution,” Ph.D. dissertation, Kent State University, 2017.

[28] J. I. Maletic and M. L. Collard, “Supporting source code difference anal-
ysis,” in 20th IEEE International Conference on Software Maintenance,
2004. Proceedings., Sept 2004, pp. 210–219.

[29] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine,
“Dex: A semantic-graph differencing tool for studying changes in large
code bases,” in Proceedings of the 20th IEEE International Conference
on Software Maintenance, ser. ICSM ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 188–197.

[30] N. Dintzner, A. Van Deursen, and M. Pinzger, “Extracting feature model
changes from the linux kernel using fmdiff,” in Proceedings of the 8th
International Workshop on Variability Modelling of Software-Intensive
Systems, ser. VaMoS’14. New York, NY, USA: ACM, 2013, pp. 22:1–
22:8.

[31] F. Jacob, D. Hou, and P. Jablonski, “Actively comparing clones inside
the code editor,” in Proceedings of the 4th International Workshop on
Software Clones, ser. IWSC ’10. New York, NY, USA: ACM, 2010, pp.
9–16. [Online]. Available: http://doi.acm.org/10.1145/1808901.1808903

[32] D. Hou, F. Jacob, and P. Jablonski, “Exploring the design space
of proactive tool support for copy-and-paste programming,” in
Proceedings of the 2009 Conference of the Center for Advanced
Studies on Collaborative Research, ser. CASCON ’09. Riverton,
NJ, USA: IBM Corp., 2009, pp. 188–202. [Online]. Available:
https://doi.org/10.1145/1723028.1723051

http://doi.acm.org/10.1145/1808901.1808903
https://doi.org/10.1145/1723028.1723051

