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Figure 1: The facet views A - C on the left provide a first overview of the reported events’ distribution along the production line.
The filtered events’ temporal distribution and optionally its outliers are presented as a stacked bar chart D . Through brushing,
analysts can get more information about the reported events during the selected timespan E . The event series can be decomposed
with STL to find recurring events and trends. The decomposition parameters are set in the Data Decomposition Control F and its
results shown as three line charts G . The Calendar Plot H provides information about outlier or value distributions of the data.

ABSTRACT

The temporal analysis of events in a production line helps manufac-
turing experts get a better understanding of the line’s performance
and provides ideas for improvement. Especially the identification
of recurring error patterns is important, because these patterns can
be an indicator of systematic production issues. We present a visual
analytics approach to analyze event reports of a production line.
Reported events are shown as a time series plot that can be decom-
posed into a trend, seasonal, and remainder component by applying
Seasonal Trend decomposition using Loess (STL). To find specific
event patterns, the data is filtered based on aspects such as the event
description or the processed product. Identified temporal patterns
can be extracted from the original event series and compared visu-
ally with each other. In addition to predefined settings, experts can
define a subseries of the event series and the period length of STL’s
seasonal component through an automatically optimized brushing
of the undecomposed plot. We developed the approach together
with an industry partner. To evaluate our approach, we conducted
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two pair analytics sessions with our industry partner’s experts. We
demonstrate use cases from these sessions that showcase our ap-
proach’s analytical potential. Moreover, we present general expert
feedback that we collected through semi-structured interviews after
the pair analytics sessions.

Keywords: Manufacturing, Industry 4.0, spatio-temporal data,
correlation analysis

1 INTRODUCTION

With advances in automation of production lines and digitalization,
many manual labor activities in manufacturing plants have been
replaced by computer-controlled machinery [11]. These machines
do not only increase productivity, but also for the first time, make
the production process fully transparent with respect to throughput,
production quality, and anomalies. They generate a large amount of
temporal data, such as process parameters and reports of events. As
the collected data is multivariate and high-dimensional, it is often
unclear, which subsets of the data should be focused on to improve a
factory’s productivity. Currently, most of the data is used to generate
daily overview reports for technical managers or to reflect on recent
anomalies during technical meetings of technicians. Although this
analysis of recent events is suited to spot currently relevant problems,
it is neglecting hidden, but as severe long-term issues that correlate
with a trend or have a repeating pattern.



Our goal is enable production experts to find and understand
long-term issues of production assembly lines. To achieve this, we
present a visual analytics approach to iteratively decompose event
logs to find recurring event patterns. Our system presents original
and decomposed event series as time series plots and in a calendar
view (see Fig. 1).

Experts analyze subset by subset of events: flexible faceted brows-
ing [31] enriched with visual summaries offers an overview and
quick filtering based on involved process steps A , event types B ,
and product types C . The filtered events’ temporal distribution, as
well as the data’s outliers, are shown in a stacked bar chart D .
Through brushing, experts can inspect temporal subsets of the
events E . The system further supports decomposing the event se-
ries into a trend, a seasonal, and a remainder signal by applying
Seasonal Trend decomposition using locally weighted regression
(loess) (STL) [10] F . The results of the decomposition are then
visualized as time series plots G and can be viewed in a calendar
view H . Analysts can choose from predefined settings or by interac-
tively selecting the recurring pattern in the visualization to set the
necessary parameters. Since an exact selection is difficult, an evolu-
tionary algorithm supports experts in optimizing the result. Relevant
analysis results can be stored as decompositions of data subsets. An
additional view facilitates a later extension and comparison of the
results. In this way, we support an iterative analysis process, where
experts collect findings and incrementally refine their understanding
of the long-term issues of the production line.

This paper studies a novel application of visual analytics in the
manufacturing domain. It combines established techniques from vi-
sualization, optimization, and interaction into a computer-supported,
integrated analysis approach. The system contributes

• visually enriched facet browsing to filter different aspects of
the event series,

• seasonal trend decomposition with STL that is combined with
an implicit parameter setup optimized using an evolutionary
algorithm, and

• an iterative analysis explaining temporal patterns for different
subsets and varying parameters.

We developed our approach in collaboration with an industry partner
who produces small to mid-sized electric motors. Experts from our
industry collaboration partner evaluated the approach together with
us in several pair analytics sessions. We present use cases from
these sessions and general expert feedback collected through semi-
structured interviews. The results show that our approach facilitates
manufacturing experts to gain relevant and previously unknown
insights into systematic issues of a production line.

2 RELATED WORK

Our approach represents event frequencies over time and is based
on standard visualizations for time-dependent data [1]. It uses a
juxtaposition (or small multiples) and superposition (or overlay) for
visual comparison [12] of the decomposed time series. Related ap-
proaches are visual analytics systems for the manufacturing domain
and of event sequences.

2.1 Visual Analytics in Manufacturing
Most visualization and visual analytics approaches that target the
manufacturing domain focus on the optimization of simulations and
production schedules.

Rohrer [23] argues that visualization helps domain experts to get
a better understanding of manufacturing simulations, for example,
by visually representing paths that operators take between machines.
Also, visualization enables an interactive communication of results
between a simulation software and its users. Another example is the
work of Wörner and Ertl [29] who present a production simulation
framework with an integrated visual analytics approach.

To optimize production schedules, Klöpper et al. [17] present a
system that generates a set of possible production schedules that can
be iteratively reduced based on aspects that experts deemed to be
currently most important. LiveGantt [15] helps experts to explore
Gantt charts of large concurrent schedules. Users can interact with
the schedule and get visual feedback about their changes’ effects.

ViDX [30] analyzes a production line’s performance based on
product tracking data with the goal to better understand effects of
machine problems. It extends a Marey’s graph to visualize products
moving through a production line. Outliers are visually emphasized
by aggregating products with similar process times. Further, the
approach provides real-time tracking of a production line’s perfor-
mance. The visualization of individual products and their processing
times improves the understanding of a line’s performance and helps
to understand the effects of problems in a production line.

In contrast to ViDX, our approach focuses on the detection of
systematic issues in a production line based on event reports filed
by machine tools with the goal of finding recurring issues over an
extended period of time.

2.2 Visual Event Series Analysis
Analyzing temporal patterns of events is also relevant outside the
manufacturing domain. For instance, there exist event visualization
tools focusing on security issues [14,19], meteorological and oceano-
graphic events [4], or historic events manifested in documents and
media [2, 18, 20]. Like in our approach, they visualize events over
time, but do not allow for decomposing the time series interactively
into trends and seasonal components.

There exist only few other visual analytics approaches that build
on such a decomposition of time series. Bögl et al. [7] provide
interactive visual guidance for selecting appropriate parameters of
ARIMA and seasonal ARIMA models, which decompose a time
series similarly to STL. Whereas we use multiple decompositions
to reflect different types of events, their goal is to fit a time series
with a single model. Follow-up work [5, 6] adds predictive analysis
features to their approach. Chae et al. [9] apply STL on Twitter
data to filter out any seasonal and trend effects to visualize unusual
events. They assume that the outliers contained in the data without
trend or seasonal series indicate abnormal events that could be of
interest. Maciejewski et al. [21] use STL to forecast hotspots of
geo-located events. These works are rather interested in prediction
and outlier detection than explaining the time series to the analyst
by applying a decomposition.

Some information visualization techniques of time series particu-
larly highlight seasonal pattern, for instance, spiral plots of the time
axis [8, 28]. We did not use such radial diagrams, however, because
they are harder to label and more difficult to juxtapose like necessary
in our scenario. Alternatively, the time series can be split by season
and plotted overlaid in 2D, juxtaposed in 3D, or encoded in color in
a calendar grid (or any other 2D grid) [27]. This procedure scales
even to large time series when color-coding the values of the series
in a pixel grid [16]. Splitting the series by different seasonal lengths
provides several blocks of plots, which themselves can be juxta-
posed [24]; it becomes difficult, however, to see trends and seasonal
patterns because the time series is not explicitly decomposed. Cycle
plots [22] use a form of dimensional stacking to compare data points
from different seasons on a linear axis; this is limited to a single
decomposition with a single season length at a time, but we want
to support the analysis of multiple decompositions with different
season lengths. We work with decomposed straight-line time axes
and use a color-coded calendar grid [27] as an additional view for
better showing weekly and monthly patterns.

3 EVENT REPORTS OF PRODUCTION LINES

We developed our visual analytics approach in close collaboration
with an industry partner. This section presents the specific scenario
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Figure 2: Data model of our industry partner. Each event comprises
a timestamp, the location of the machine that reported the event, the
product type that was processed, and an event type.
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Figure 3: Excerpt of a typical production line structure that com-
prises several process steps, each composed of several stations that
perform the production tasks.

of the production line we study. We derived requirements for a
visual analytics approach to find recurring machine tool problems in
a production line and introduce the data that is available for analysis.

3.1 Specific Scenario of our Industry Partner
Our industry partner produces small to mid-sized electric motors.
The production line we study produces six types of motors with 84
variants overall and comprises 14 process steps. Amongst others,
the production line records data of its stations’ process times and
what product type is being produced. Currently, the data is used
to monitor the processing time and deviations are investigated at
the shop floor. The data analysis is done on two levels: in a daily
meeting, all technicians discuss recently occurring problems. The
analysis of specific problems is usually conducted by looking at
the process times and occasionally at the reported events during a
specific time period, which is usually one day. Further, the head of
the production line irregularly analyzes the process times of various
stations. Such an analysis may include the data of the past hours
up to a few weeks. If the head of the production line finds any
anomalies, he consults the technicians at the shop floor to get further
details about the identified problem and assesses solution strategies.
Our goal is to support the head of the production line in finding
events that recur over an extended time period.

3.2 Available Data
Our industry partner provided us with real production data, which
contains events that are automatically reported by machine tools.
Each report comprises a timestamp, the location where the event
occurred, the product type that was processed during the event,
and the event type (see Fig. 2). The location is composed of the
production line, which is separated into several process steps that
contain stations. Fig. 3 shows an excerpt of a typical production line.
The event type is detailed by an ID, a human-readable description,
and a severity level (information, error, etc.). During our study only
considered event reports that have the severity level error, as these
have the highest impact on productivity.

3.3 Requirements
We had several meetings with domain experts of our industry partner
to understand what insights they hope to find in their data. Currently,

analyses are executed on short time intervals and issues of the past
day. We decided to support the analysis of problems that occur
regularly over an extended time period to find previously unnoticed
event patterns and identified the following requirements:

Requirement 1: Overview & Faceted Information R1

Present an overview of the available events with respect to the
process step, event type, and product type. Further, provide inter-
active data filters and visualize the events’ temporal distribution.

Requirement 2: Pattern & Outlier Identification R2

Help analysts to semi-automatically find seasonal patterns, trends,
and outliers of the reported events.

Requirement 3: Extract & Compare R3

Facilitate analysts to extract analysis results, visually compare
them, and interactively extend them.

4 APPROACH

Our concept comprises three parts: first, analysts get an overview
of the data and filter it according to their needs with facet views.
Second, they analyze the filtered data regarding its temporal aspect.
Third, analysts can extract and compare findings (see Fig. 4).

4.1 Data Subset Configuration through Faceted Search
Initially, the analysts choose a time period. The following analysis
is conducted in the Detailed Analysis View (Fig. 1). The Facet Filter
Panel on the left uses faceted browsing [31] to filter the events based
on their process step, product type, and event type. All facets have a
common color scheme for event counts, which ranges from a light
yellow via orange and red to black. In most cases, the facets also
provide an overview of the events’ distribution along the production
line’s process steps. The distribution is visualized as a sparkline
visualization [26] that presents the production line’s process steps
as bars, with descriptions available via tooltips. The height of a bar
encodes the number of events of the step normalized per row.

Process steps. The Process Step Facet (see Fig. 1 A ) lists all
available steps in their processing order. Each item provides the ID
of the step, its description, and its event count. In addition, it shows
an event share visualization similar to a Pareto chart [25], which is
commonly used in the quality management domain. The event share
is visualized as a bar, where the width of the bar represents the step’s
share relative to the total event count. Further, a line indicates the
cumulative event share of the current and all previous process steps.
Our industry collaboration partner’s experts explained that such an
information is an important aspect for prioritizing analysis tasks.

Event types across process steps. The data can also be filtered
based on specific event types (see Fig. 1 B ). Each row corresponds
to one type and comprises its ID, description, occurrence count
(which is also the sorting criterion of the list), and the event dis-
tribution sparkline. Analysts get a quick overview about the event
distribution along the production line.

Product types across process steps. Analysts can filter the data
with respect to the products that were being produced when events
occurred (see Fig. 1 C ). The product type filter facet is similar to
the facet explained above, but instead of using event descriptions, the
facet provides information about the events’ distribution depending
on the produced product. Each product is represented through a
unique product number. The experts from our industry partner told
us that this number is readable by analysts who are familiar with the
production line. This way, it is possible to quickly see similar event
distributions of different products.
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Figure 4: At first, the users need to select, which timespan to analyze and what event type should be used. The data used in each analysis is set
through facet views, which also provide an overview of the various data aspects through sparkline visualizations. After filtering the data, the
users can inspect the aggregated event series in a line plot, which can be decomposed into a trend, seasonal and remainder component. In this
view, analysts can iteratively extract outliers, trends, and seasonal patterns.

In case entries from multiple facets are selected, the data needs to
meet at least one selection from each facet. The faceted views meet
parts of requirement R1 (Overview and faceted information).

4.2 Temporal Analysis using Event Series Decomposi-
tion

The analysis to find temporal event patterns is conducted in the
Event Series Decomposition Panel (see Fig. 1 D ). For the temporal
analysis, the filtered data are aggregated by the hour in which they
occurred. Initially, this panel consists of four plots.

All series in the Event Series Decomposition Panel have a com-
mon x-axis that represents the loaded time frame. The y-axes rep-
resent the number of events at a point in time. It adapts to the data
shown in the plot and not the global maximum to use as much space
of the plot as possible. We do not optimize the diagrams’ aspect
ratio individually as suggested in literature [13] as there are large
differences in the characteristics of the time series and optimization
would result in considerably varying scales of the y-axis. Instead, we
keep the heights of the diagrams constant in the juxtaposed plots to
ease the visual comparison. We use the SciChart WPF Framework1

to generate all plots in the Event Series Decomposition Panel.
The event series plot, shown at the top of the panel, is always

available and shows the filtered data, as well as (optionally) the
data’s outliers, in a stacked bar chart. At last, the panel provides
three (initially empty) line plots that, once the analysts choose to
decompose the series, provide the trend, seasonal, and remainder
components of the series. To provide a better comparability between
the seasonal and trend series, their y-axes have a shared min-max
range. The trend, seasonal, and remainder series are described in
more detail later in this Section. The event series plot meets the tem-
poral aspect of requirement R1 (Overview and faceted information).

Outlier configuration and extraction. Analysts can optionally
inspect and extract outliers from the event series plot. This is useful,
because outliers may indicate unexpected events that should be
further investigated. In addition, the extraction of outliers before the
event series’ decomposition improves the results, as STL may miss
some outliers and include them in the seasonal component.

In case the outlier detection is enabled, we replace parts of the
event series plot with red bars proportional to the outlier part of the
series. To decide if and to what extend a point is an outlier, we use
the data point’s standard score, which describes how many standard
deviations a data point deviates from the data series’ mean value. We
define a data point as an outlier, if its standard score is higher than
x, which is four by default. However, the outlier threshold can be
changed through a slider control, because it depends on the dataset
and the analysts’ notion what an outlier is.

Removing the entire outlier would likely cause another outlier,
because no events during one hour are unlikely (except nothing is
produced). Therefore, we calculate a compensated value for every
outlier. First, we interpolate linearly between the previous and next

1https://www.scichart.com

Figure 5: Exemplary depiction of a choice between various seasonal
parameters used by STL. The first two options (with values of 7 and
51) still contain much noise, while the remaining three choices (with
values of 151, 251, and 351) do not differ noticeably.

data point and then add or subtract x standard deviations to the
interpolated value to move it towards the data point’s actual value.

Iterative Analysis of Trends and Recurring Behaviors. After
filtering the data and optionally extracting outliers, analysts can
decompose the event series plot using Seasonal Trend Decompo-
sition using Loess (STL) [10], which decomposes an event series
into a trend, seasonal, and remainder component. The trend repre-
sents long-time effects in a time series. The seasonal component
represents the recurring effects during the series. These are of the
most interest, because recurring events may indicate systematic
problems in the production line. With the visualization of the trend
and seasonal component contribute towards requirement R2 (Pat-
tern & outlier identification). The remainder component represents
the difference between the initial event series and the extracted trend
and seasonal components. Thus, it consists of noise that is present
in the data and non-extracted outliers. Further, it may contain non-
extracted seasons that have a shorter length than the current season
(longer seasons are extracted partly into the trend component).

Analysts need to provide three arguments to run STL: the time
series represents the dataset used for the decomposition. In most
cases, this is the entire series shown in the event series plot, but
the users may manually select parts of the series (see Section 4.3).
The seasonal period length defines the number of data points per
season (e.g., 24 to analyze daily seasons). The strength of the
seasonal smoother defines how strongly the seasonal component
should be smoothened. A high value will lead to seasons with very
low variations over time, while a low value allows high variation,
which may also include noise. The strength of the smoothener
cannot be predetermined, as the analysts needs to decide, how much
variation is allowed in the seasonal component. As the analysts are
usually no data scientists, we do not expose the other parameters
and approximate them automatically (see Cleveland et al. [10]).

We provide a predefined set of seasonal period lengths to detect
daily, weekly, or monthly patterns, but the period length can also be
set manually (see Section 5 for details). Once the analysts decided
on the event series and the period length, we provide them with a
preview of the seasonal and trend component for different values
for the smoothing parameter. Fig. 5 depicts an exemplary choice for
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Figure 6: The users can define their custom event series by first
selecting a start and endpoint of the first season occurrence ( A ).
Then, they define a gap (which can be zero) between the seasons’
occurrences. To get a feedback of the selected pattern, the all seasons
that fit in the event series are also highlighted ( B ).

several seasonal parameters. The first and partially the second choice
still contain much noise, and the remaining proposals show similar
results, so an expert may choose the third parameter. We determined
the proposed values empirically and deemed them appropriate for
the decomposition of event series in a production line. However, this
does not mean that they cannot be applied for other datasets. This
contributes to requirement R2 (Pattern & outlier identification).

It is important to understand a few fundamental concepts of STL
to make sense of its results (we refer to Cleveland et al. [10] for
technical details). The seasonal component is extracted in two steps.
First, the input series is split into subseries that all have the input
seasonal length. Then, the subseries’ elements are aligned and
smoothed (e.g., the i-th element from subseries A is only smoothed
with the i-th element from subseries B, C, etc.). At last, the seasonal
component is extracted. The seasonal smoothing parameter defines,
how many of the neighboring elements should be considered during
the smoothing operation and how strongly they affect the result. The
trend component is extracted using all data points of the series in
their temporal order. The remainder component represents all the
data that was not extracted into the trend or seasonal component.

The resulting trend, seasonal, and remainder components are
shown in their respective plots in the Event Series Decomposition
Panel. In case the decomposition yields a season or trend that the
analysts deem interesting and plausible, the current analysis state
can be stored in the Event Series Comparison View (see Section 4.4).

Calendar Plot. To further supplement the analysis of the event
series, we provide a calendar below the plots (see Fig. 1 H ). The
analysts can switch the data source by through a combo box. If
the data source is the event series, the analysts can further choose
to show the regular data or the outliers. We used the same color
scheme as in the Facet Panel (which ranges from a light yellow via
orange and red to black). Initially, the calendar is grouped monthly
and every entry represents one day, much like the calendar plot
used by van Wijk and van Selow [27]. The analysts can change
the time granularity of the calendar, so that the calendar’s cells
can represent hours, days, months, etc. If the calendar cells have a
coarser granularity than the plot views (days, months, years, etc.), we
calculate the average outliers/events per hour for the color mapping.

4.3 Inspection and Filtering of User-Selected Data
In addition to the explicit filter facet, the analysts can retrieve in-
formation about event types by directly interacting with the event
series plot. They can either inspect reported events at a certain time
(e.g., one specific hour) or during a time interval (from 8 am to
8 pm). A specific point in time can be selected by right-clicking. An
extended time frame is selected by brushing over the interesting part
of the event series plot. The selection is highlighted with a light blue
background (see Fig. 6 A ). Then, the selected event reports can be
retrieved by right-clicking the highlighted area.

The retrieved event types are listed to the right of the event series
(see Fig. 1 E ). The listed event types’ selection is coupled with
the event type filter facet, so selecting an event type in one filter
will also select it in the other. The context dependent event type list

Figure 7: The event series comparison view presents stored event
series by visualizing its event series and (if extracted) their outliers
as a stacked bar chart, which is overdrawn by line charts of the
decomposed event series. This example shows the original event
series as well as two subseries of different event types.

provides a secondary filter option and therefore supports requirement
R1 (Overview & faceted information).

4.4 Event Series Comparison
Analysts can store insights gained during the analysis process by
storing the current filter settings and decomposition results in the
Event Series Comparison View (see Fig. 7). The series are visualized
as a superimposed representation. To perceive the original data
as well as its decomposed series, the stacked bar chart containing
the event series and outliers is overlaid by the line charts of the
decomposed event series. The analysis configuration can also be
restored to the Detailed Analysis View to continue the analysis. Fig. 7
presents an exemplary comparison that contains the original data
series, as well as two series filtered by two different event types.
The series’ events occur at very similar points in time, which may
indicate that the events may be related.

5 SELECTION AND OPTIMIZATION OF PARAMETERS

If the predefined STL seasonal periods are insufficient, analysts can
define a custom pattern. First, they need to select the pattern’s first
occurrence analogous to Section 4.3. Further, analysts can indicate
a timespan to skip during the decomposition by dragging a replica
from the highlighted pattern to the next occurrence. We highlight
the user-defined event series across the event series plot to make the
resulting series more comprehensible (see Fig. 6 B .

If the event series comprises a high number of data points, ana-
lysts may have problems to set the exact values they desire. Thus,
we developed an optimization approach based on an evolutionary
algorithm that automatically improves the users’ input parameters.

Similar to genetic evolutionary algorithms, our implementation
comprises the following six steps, where step (0) is executed just
once and steps (1)–(5) repeat n times:

0. Initialization. We create an initial set of 30 parameter config-
urations. The parameter values are randomly initialized with a
uniform distribution around the users’ input values. The starting
point can vary by up to 24 hours, whilst the period and gap
length can vary by up to 48 hours.

1. Fitness Evaluation. To evaluate each parameter configuration,
we first decompose the event series based on the configuration’s
parameters and then extract its seasonal component (cs). Our goal
is to search for a seasonal series that will be as uniform as possible
when split into its seasonal periods. To do so, we split cs into its
seasonal subseries csi. Then, we build an average subseries csavg
of the selected and the following two subseries, assuming that
the searched pattern will be most visible close to the first pattern
occurrence. Then, we calculate the average variation between
the first three subseries csi and csavg and build the average of the
variation series’ values (csvar). We define the fitness f as

f (cs) = csvar

(max(cs)−min(cs)︸ ︷︷ ︸
Range of the series’ values

)2
.

It should be noted that a lower fitness value is better.



2. Keep Best Configurations (Elitism). To save the best results,
we transfer the 10 % best configurations to the next generation.

3. Discard Unfit Configurations. The lowest scoring 50 % of the
configurations are removed.

4. Recombination. New parameter configurations are created by
combining two still existing “parent” parameter configurations A
and B. The new configurations’ values v are based on a weighted
average between the parents’ values vA and vB. The parameter α

is randomly picked based on a uniform distribution:
v = α · vA +(1−α) · vB, where α ∈ [0,1]

5. Mutation. At last, the new configurations’ parameter values have
a slight change (p = 0.1) to be randomly changed within the
variation explained in the initialization step. Values that are out
of bounds (e.g., a start date earlier than the first data point’s date)
are assigned the outmost allowed value.
We update the user-defined selection whenever a better result

was found. Due to step (5), which broadens the pool of available
parameter configurations, an evolutionary algorithm is more robust
regarding local optima than simpler optimization approaches (such
as hill climbing).

Results The optimization approach was not part of the pair an-
alytics sessions presented in Section 6, as the domain experts had
no experience with our approach and we wanted to evaluate the
general approach first. In the following, we present and discuss an
exemplary result achieved with our input optimization approach.

As a proof of concept, we evaluated, if our evolutionary algo-
rithm optimization is able to recommend a weekly pattern for the
unfiltered event series. The unfiltered event series provides only one
trivial insight, but it is clearly visible that the seasonal component
reflects the weekends during which usually no events were reported.
Fig. 1 D & G show, what the decomposition should look like.

We hypothesized, that the evolutionary algorithm recommends
that the season and the season gap should add up to seven days and
that the period length should be between five and seven days.

We ran multiple test runs and manually set the period length to
be six days and the gap between the seasons to one day to cover our
assumed results, but also allows results outside of our assumption
(e.g., four days without a gap). Our results show, that a seven
days period without a gap achieves the best result (f = 6.66 ·10−5),
whereas a period length of five or eight days without a gap resulted
in the worst results (f = 1.71−1.74 ·10−4). We also noticed, that a
seasonal length of six days with one day gap resulted in suboptimal
results (f = 1.18 ·10−4). We assume that the variation on Sundays is
still a better trade-off than ignoring Sundays and only considering
the variation of the remaining six days.

Overall, it can be said that our optimization approach is promising,
but there is still room for improvement regarding the handling of the
data during the gaps between the seasonal patterns.

6 EVALUATION

We evaluated our approach in two pair analytics sessions [3] with
experts from our industry partner. In pair analytics, one or more
domain experts work together with a visual analytics expert. The
domain experts contribute their expertise and experience to focus
the analysis on interesting data, whilst the visual analytics expert is
operating the visual analysis tool.

We prepared the pair analytics session by searching for poten-
tially interesting patterns by ourselves, which we used as a starting
point during the pair analytics sessions. In the following, we will
first showcase three use cases we derived during the pair analyt-
ics sessions to demonstrate, how our approach contributes to the
analysis or event patterns in a production line. All of the use cases
are based on real production data that spanned roughly six months.
Only the visual analytics expert is one of the co-authors of this paper.
We worked together with two domain experts: the first expert is

Figure 8: The distribution of the errors per product type along the
production line shows several groups of error distribution (high-
lighted in different colors). Our domain experts already assumed
such profiles. Further, they noticed that these profiles do not always
correlate to the different groups of produced products (e.g., electric
motors with and without a power train extension).

responsible for the data acquisition and to make the data available to
workers on the shop floor of the factory. He was also involved in the
development process of our approach. The second expert is head of
a production line and was consulted only for the evaluation of our
approach. Each of our pair analytics sessions lasted approximately
60 minutes. Furthermore, we present general feedback we collected
from the domain experts after the pair analytics sessions. As ex-
plained in Section 3.2, we limited the data to events that have the
severity level error, as these events are most important. Therefore,
we will refer to events as errors for the remainder of this section.

Use Case 1: Error distribution along a production line
Before we started with the first detailed analysis, one expert men-
tioned that the error distribution shown in the error code facet differs
from what he expected. There are, generally speaking, four differ-
ent types of electric motors produced in the production line. He
expected that the four types would have different error distributions
when compared to each other and that variations of the motor types
would have similar errors and error distributions. However, the data
only partly backs up these assumptions. There are similarities in
the error distributions, but the motor type is not always the same.
Fig. 8 shows an excerpt from the product type facet, wherein the
different error distributions are highlighted. The similar distribution
is partially explainable, because even if the motor types are different,
they still share parts of their production plan. However, some of the
similarities were not explainable this way and further investigations
in cooperation with workers on the shop floor level are required to
assess other reasons.

Use Case 2: Analysis of Recurring Error Patterns
When we continued, the domain expert was interested in the most
often occurring error code. This error was at the label checker station
that has to take the part off the work piece carrier to process it. We
decomposed the series with a period length of one week to check for
error patterns, as the line’s production schedule usually repeats every
week. Fig. 9a shows the error series and the resulting seasonal plot.
The seasonal pattern shows two characteristics: first, the pattern
starts with a short period of time, where no errors occurred. This
is expectable, as the line usually does not produce anything during
Sundays and therefore there cannot be any errors during that time.
However, the pattern disappears towards the end of the series, as the
production line runs more often on Sundays.

Second, the number of reported errors is remarkably higher to-
wards the beginning and the end of the week compared to other
days. The head of the production line hypothesized that this finding
may be caused by the quality of the imported parts used during the
production. He explained that the line usually uses parts from a
main supplier, but towards the end of the week, these parts often
run out. In that case, they switch to parts from another supplier,
whose parts have a higher quality variance than the main supplier’s.



(a) The data shown in the event series plot (top) is decomposed to search for weekly
seasonal patterns. There are no errors on Sundays (flat line before the arrow pairs) and
the amount of errors is increasing at the beginning and end of the week. The arrows
indicate at what times the overall number of errors increases.

A B

C

(b) The inspection of one of the error series’ outliers reveals that the same component
caused issues on various stations along the production line within an hour. When
filtering for individual errors (highlighted entry in the tooltip) it becomes apparent that
the errors repeat approximately every month (highlighted through circles).

Figure 9: Results of use case 2 (a) and use case 3 (b)

Although the parts’ quality is mostly within the allowed margin of
error, the stations that process these parts have a higher likelihood to
encounter problems when processing these parts. This hypothesis
was supported when the expert accessed the logistic department’s
inbound delivery list, which our tool cannot access. He further men-
tioned that they were aware of this issue before. However, they were
not able to prove that this is a regularly recurring issue, because they
were not able to back this hypothesis with data using their previous
analysis methods. Therefore, this finding is helpful because it can
be used to argue for an improvement of the robustness of stations
that need to process the mentioned supplied parts.

Use Case 3: Analysis of Outliers for Pattern Analysis

The error series of the Event Series Decomposition Panel shows a
remarkable outlier in the second half of the data that we used during
the evaluation (see Figure 9b A ). We selected the error distribution
during the largest outlier’s point in time by selecting it. Almost
all errors were related to the ID-40 module, which is a sensor that
reads the ID of the work piece holders to provide tracking within the
production line (Fig. 9b B ).

Usually this error indicates a broken sensor, but in this case, the
error was reported from various stations at the same time. One expert
explained that such an error distribution may indicate a problem with
the bus system that connects the sensors to the IT infrastructure. We
filtered some of the errors one after another and noted that the errors
repeat approximately every month (see Fig. 9b C ).

The head of the production line stated that this is an interesting
and unexpected finding that they were not aware of before. As a
result, they will cover both possible scenarios. First, the technicians
will be informed to watch such sensor errors more closely. Second,
the finding is forwarded to the responsible department, as it is not
possible to fix it by improving the production line, but other lines
in the factory may be affected by this problem as well. Some time
after the analysis we were told that parts of the identified issues were
caused by a bug in one of the machine tool’s programs, which was
resolved.

General Expert Feedback

After the pair analytics sessions, we asked the participating experts
about feedback regarding the general approach and the different
components through a semi-structured interview. We asked the
experts about advantages and drawbacks of the currently available
views and if they could imagine any enhancements that would help
them with their work. They first remarked that our approach results
in a powerful tool that must be used by an engineer in a supervising
position, as shop floor technicians have neither time nor necessary
expertise to analyze such error patterns. They also mentioned that
this is not a problem, as experts such as production line heads can

use our approach and forward the gained insights to the technicians
at the show floor level.

The experts summarized that the Event Series Comparison View
is especially useful to see what data was already analyzed in the past.
They further explained that the iterative analysis approach on the
overview and detailed analysis level is helpful. It enables experts to
either pursue a specific error until its occurrence is completely under-
stood (varying STL configurations) or to analyze the most important
errors separately (varying filter configurations). The overview of the
analyses provided in both views is important because the analysis
runs are often interrupted, e.g., because talking to specialists is re-
quired to solve an issue. The experts further inquired that the Event
Series Comparison View should be extended to contain information
about the shown series’, such as the used filters.

The experts also found the Facet Panel useful. They mentioned
that the product type facet is very helpful to gain more insight about
the errors’ distributions. The process step and event type facets are
also useful, but unlike the product part facet, they cannot be used
for a free exploration of the data. Instead, the analysts must already
have a specific analysis goal that requires a selective investigation.

The experts stated that the extraction of outliers and seasonal
trends are both of importance. An outlier extraction can be used to
detect special events that may require special attention. The seasonal
series extraction enables to form hypotheses about systematic errors
that are backed by the available error reports. Furthermore, the ex-
perts emphasized that engineers are usually not experts in statistical
analysis and thus require an easy to use approach to decompose
the temporal error series. They understood that our approach ex-
poses only the required parameters towards the user. However, the
results are still sometimes hard to interpret, so they asked for more
indications that help them to configure the analysis. One of the
experts imagined that the system could suggest decomposition con-
figurations automatically without the need to set these parameters
manually. An expert would still have to evaluate which suggestions
are useful, but it would make their analysis process easier. At last,
the experts rated the Calendar Plot to be useful, because it gives a
different view at the time series and also provides information about
other time granularities, such as a daily or monthly level of detail.

7 DISCUSSION, FUTURE WORK, AND LESSONS LEARNED

During the evaluation, the domain experts suggested that the Analy-
sis Summary View should contain more information about already
performed analyses. This information could comprise used filters,
when was the analysis opened last, and others. In addition, we intend
to support the comparison of detailed analyses to provide feedback
about similarities across multiple analysis runs.

In use case 1, the experts got first insights through the sparkline
visualization in the product variant and event type facet views. How-
ever, they might have found similar event behaviors of different



products by chance, as the compared product variants must be both
visible in the list to be comparable. This issue is caused by our
current sorting by total event count. We plan to extend the Facet
Panel so that the process steps can be filtered to those of special
interest. Further, their order could follow other criteria, such as the
similarity of the events’ distribution.

In our approach, we use STL, because it returns the series’ trend
and seasonal component independently. Further, STL requires only
three input arguments (the time series, the seasonal period length,
and the seasonal smoother’s strength). However, it still takes some
time to understand the approach and the domain experts are not
experts in data analytics. Therefore, we plan to try other decom-
position algorithms and evaluate their suitability. Algorithms that
are, like STL, based on an auto-regression integrated moving aver-
age (ARIMA) model seem to be best suited. The most important
evaluation criteria will be comprehensibility and steerability.

We also want to test to automatically propose interesting seasonal
intervals. One possibility would be to apply the optimization ap-
proach to the whole event series plot without the restrictions of a
user-defined input.

Further, it may be hard to understand how an evolutionary algo-
rithm compares various parameter configurations. Thus, we plan
to test other optimization algorithms and enable the user to better
influence the evaluation criteria of a “good” parameter configuration.

During the meetings with our industry partner, we realized how
important it is to provide domain experts with visualization tech-
niques that they are already familiar with. The experts first search
for facts they already know to test the new approach’s credibility.
If they would have to learn a new visualization metaphor first, the
experts may lose interest in before understanding it. Using facets,
stacked bar charts, and line plots provides this low barrier.

Further, the data of our industry partner is dynamic and evolves
over time; for example, the amount of collected data increases due
to more sensors or newly defined event types. Also, its quality
improves through refined event types and patterns may disappear
because they are solved. This needs to be taken into consideration
when analyzing recurring patterns.

8 CONCLUSION

In this paper, we presented a visual analytics approach to support
manufacturing domain experts in analyzing temporal event patterns
in production lines. Our concept was developed in cooperation with
an industry partner that produces electric motors. The approach com-
prises two views that support the events’ temporal pattern analysis.
The Detail Analysis View combines facets to filter data with Seasonal
Trend decomposition using Loess (STL) to iteratively extract event
patterns, which may indicate systematic problems in a production
line. The Event Series Comparison View provides an overview of
the extracted patterns and enables analysts to compare them visually.
We evaluated our approach through three use cases that were worked
out in two pair analytics sessions with experts from our industry
collaboration partner to demonstrate our approach’s usefulness in the
manufacturing domain. Additionally, we presented expert feedback
and possible future extensions for our approach.
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