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Figure 1: The main view of our visualization: a) the labels in the dataset are represented as rows with their names displayed, b) aggregated
statistics about each label, c) each column represents one multi-label classification result (in this example we have five multi-label classifi-
cation results); the numbers on the left of each column (Occ) show the amount of items that were assigned the label of that row within the
multi-label classification result; the graphs on the right of each column show overlap relationships between labels.

Abstract
In multi-label classification, we do not only want to analyze individual data items but also the relationships between the assigned
labels. Employing different sources and algorithms, the label assignments differ. We need to understand these differences to
identify shared and conflicting assignments. We propose a visualization technique that addresses these challenges. In graphs,
we present the labels for any classification result as nodes and the pairwise overlaps of labels as links between them. These
graphs are juxtaposed for the different results and can be diffed graphically. Clustering techniques are used to further analyze
similarities between labels or classification results, respectively. We demonstrate our prototype in two application examples
from the machine learning domain.

1. Introduction

To structure large datasets, the data items can be grouped depend-
ing on their properties into multiple categories. In many scenarios,
a given item can be part of several categories at the same time. Rel-
evant examples are assigning multiple genres to movies, labeling
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various objects contained in images, assigning skills to employ-
ees, or keywords to documents. Hence, each item can have multi-
ple labels, representing the categories it belongs to, and each label
can be given to multiple items. Such multi-label data can originate
from algorithms or human classification. It is likely that the multi-
label classification results (henceforth: multi-labeling results) of the
same items will vary for different sources as the classification pro-
cedure might not work flawlessly or the labeling task might be
ambiguous. Visually comparing these different results can reveal
shared and conflicting assignments, and it can provide relevant in-

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

https://orcid.org/0000-0002-6038-8540
https://orcid.org/0000-0003-3158-2624
https://orcid.org/0000-0001-6745-3651
https://orcid.org/0000-0003-4042-3043


C. Krause et al. / Visual Comparison of Multi-label Classification Results

sights about the multi-labeling results beyond traditional quantita-
tive metrics like precision and recall.

The visual analysis of individual multi-labeling results can be
translated to the problem of visualizing overlapping sets, which
has been well researched [AMA*16]. However, comparing multi-
labeling results from multiple sources adds new complexity to the
visualization problem and is not yet sufficiently discussed in set
visualization literature.

We propose a novel approach for the comparison of multi-
labeling results that is based on a tabular representation enriched
with inline graphics as the main view (Figure 1). Labels are rep-
resented as rows and multi-labeling results as columns. One label
and one multi-labeling result can be selected and get highlighted.
Each selection specifies a certain set of labeled items. The over-
lap of this selected set with other sets of items identified by labels
and multi-labeling results, respectively, are then shown as small
bars within the table cells. Labels are connected by graph edges
within each column (multi-labeling result) to show the overlap of
items between the labels. The approach supports visually compar-
ing the graph of a selected multi-labeling result with all other ones
to identify missing and excess links (Figure 2b). Lastly, we allow
for clustering of both, the labels and the results, to enhance the dis-
play order and reduce clutter. Details of selected items are provided
in a list-based view (Figure 2c/d).

Our contributions include the characterization of the research
problem along abstract analysis questions (Section 3). Building on
these, we design the approach for the visual comparison of multi-
labeling results (Section 4). We illustrate the capabilities of our ap-
proach along two specific use cases from the machine learning do-
main, covering an exemplary engineer’s perspective on improving
his own models as well as comparing top contenders of an image
recognition challenge (Section 5). The tool and a video are avail-
able as supplemental material along with the submission†.

2. Related Work

For our approach, previous work on visualizing multi-labeling re-
sults is most relevant. We also discuss works on the related set
visualizations and graph comparison techniques, which formed a
basis of our visual analysis approach considering multi-label as-
signments as sets and abstracting label co-occurrence to graphs.

2.1. Visualizing Multi-label Classification Results

Usually, quantitative metrics are used for statistical comparison of
multi-label classifiers (e.g., [MKGD12]). Recent works have shown
the usefulness of including these metrics in visual analytics tools.
For instance, ComDia+ [PLHL19] helps to diagnose the reasons
behind misclassifications, and improve the overall performance of
the classifiers. The approach shows model performance in individ-
ual rows, while columns indicate the actual class of the data item. In
each cell, precision and recall measures for each model are encoded
via two semi-circles. Similarly, Theissler et al. [TVB*20] proposed
a model-agnostic approach to compare multi-class classifiers and

† Hosted at: https://vis-tools.paluno.uni-due.de/mlc/

used different charts in the interface to compare classifier perfor-
mance. However, these techniques rely on visually comparing the
performance metrics of classification results. As a result, they are
unable to support visual exploration and comparison of qualitative
aspects like relationships among assigned labels. Demonstrating
the value of qualitative aspects, Alsallakh et al. [AJY*18] extended
a confusion matrix visualization to show that the confusion pattern
over several classes followed a hierarchical structure using a single-
label (only one label prediction per data item) multi-class classifier
for image data. Hence, in our approach, we focus on representing
relationships among labels from one multi-labeling result, and also
compare the relationships across different results.

Several visualizations have been proposed to analyze single-
label multi-class classification results (e.g., [AHH*14; RAL*17]).
However, these techniques do not generalize well to visualize the
multi-label data, where each data item can be assigned more than
one label. Only a few works have been proposed that support
visual analysis of multi-labeling results. For instance, UnTangle
Map [CLG16] uses triangle vertices to show labels and visualizes
the data items in a web of such connected triangles. This technique
was demonstrated to be useful in understanding the relationship be-
tween labels. However, unlike our approach, the visualization can
only show one classification result at a time and is unable to support
comparison between different classification results.

2.2. Set Visualizations

We can model each label as a set and data items that were as-
signed the label as elements of the set. In doing so, set visualiza-
tions can be used to represent a multi-labeling result. Euler- and
Venn-based set visualizations (e.g., [Wil12]) are intuitive and can
represent all overlap relations when drawn for a small number of
sets (<6). However, in multi-labeling scenarios, typically more la-
bels are available. Hence, we do not include Euler- and Venn-based
set visualizations in our approach. Most of the recent research fo-
cus on scalable set visualizations uses aggregated representation of
sets and elements (e.g., UpSet [LGS*14] and AggreSet [YEB16]).
Recently, hypergraph visualizations of set data have also demon-
strated the ability to scale well (e.g., [VBP*19]). These techniques
represent the data based on only one criterion of deciding the set
membership of elements. In contrast, in our approach, we aim to
compare the multi-labeling results on the same data items from dif-
ferent sources. Hence, we cannot directly apply these techniques to
represent and compare several multi-labeling results.

2.3. Visual Comparison of Graphs

Generally, multilayer graph visualization can show different edge
sets of a graph modeled in the different layers [MGM*19]. Our fo-
cus is on graphs that have the same nodes in all layers (namely,
the available labels). Juxtaposition is one way to support compar-
ison tasks [GAW*11; LJS20]. It has been shown that juxtaposed
designs for the comparison of individual charts are familiar to peo-
ple and easy to understand [LJS20]. Juxtaposed comparative de-
signs are often combined with careful selection of a graph layout.
For instance, TimeArcTrees [GBD09] uses a linear vertical layout,
computes node positions to reduce the edge crossings, and jux-
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taposes graph variants on a horizontal axis. Parallel Edge Splat-
ting [BVB*11] uses a similar linear vertical layout to represent
nodes, but places them on two parallel vertical lines per graph in-
stance. Directed edges are then drawn between nodes from two
adjacent parallel lines. As a result, visualizing a graph using par-
allel edge splatting becomes more scalable because the crossings
of the straight-line edges are easier to resolve than crossing arcs
in TimeArcTrees. While this approach was developed to show dy-
namic graphs, Beck et al. [BPD11] suggest a similar layout for
graph comparison. In addition, specific interactive highlighting fea-
tures and graph merge operations support the comparison more ex-
plicitly. A user study has shown that various relevant visual patterns
such as clusters, fan-in/-out structures, and high-level relationships
can be identified with the approach [ABZD13]. We take inspiration
from the technique and adapt it to compare pairwise overlap among
the labels for different multi-labeling results.

3. Analysis Questions

Based on an analysis of the problem domain, we formulate anal-
ysis questions (AQ) that have guided the design decisions of our
visualization approach. We group them by the targeted scope of the
data and arrange them along their growing complexity. The analy-
sis questions act as a reference throughout the paper and allow for a
better connection between visualization design, application exam-
ples, and discussion. The analysis questions were discussed among
the authors and iteratively refined, striving for completeness, con-
sistency, and distinctness. The discussion was based on our pre-
vious experience working with multi-label classification problems
(mainly, regarding document and image collections) and shortcom-
ings of existing approaches (see Section 2).

A first step towards comparing labels over two or more multi-
labeling results is contrasting label occurrences, which refers to the
numbers of items that were assigned a given label. Generally, sim-
ilar occurrence values across multiple results suggest similarity in
label assignment. However, similar values do not necessarily imply
that the label is undisputed, as the label could have been assigned
to different groups of items with similar sizes. Therefore, the oc-
currence value alone is not sufficient. It is also required to analyze
over several multi-labeling results whether the items with a particu-
lar label are the same. The identification of results in which certain
items are classified differently than in the majority of other results
can lead to a deeper understanding of the cause and reveal miscon-
ceptions in the multi-labeling results beyond general inaccuracy.

AQ 1 – Items and their labels over different results

AQ 1.1 Which labels are most frequent in the dataset across
different results?
AQ 1.2 To what degree are items assigned with the same
label over different results?
AQ 1.3 How do the assigned labels for a specific item differ
for different results?

Additionally, similarity relationships between the labels are rel-
evant to understand a multi-labeling result. It is possible, yet not

scalable, to manually find co-occurrences of labels by scanning in-
dividual label sets of items. A more advanced analysis requires ag-
gregating this information at the level of labels and investigating
the relationships of labels depending on the overlap of the items
they were assigned to. Special types of similarities, like subset re-
lationships (e.g., all items with one label are assigned another label
as well), might form hierarchy-like structures. Lastly, the pairwise
similarity of multiple labels can reveal clusters of labels and, in
turn, implicit higher-level topics among the labels.

AQ 2 – Relationships of labels within one result

AQ 2.1 How strongly and in what way do specific labels
overlap in a given result?
AQ 2.2 What function does a label serve in relation to other
labels within a result?
AQ 2.3 Do the labels form higher-level clusters of similar
labels?

Comparing sources of multi-labeling results, we need to contrast
their above-mentioned similarities. We want to study whether the
same overlap relationships and clusters of labels can be observed
throughout all results.

AQ 3 – Relationships of labels over different results

AQ 3.1 Do the same labels show similar relationships for
all results?
AQ 3.2 Are the clusters of labels the same for all results?

Out of the presented analysis questions, AQ 1 and AQ 3 con-
cern the comparison of different multi-labeling results. The ques-
tions in AQ 2 complement those of AQ 1, but are also needed in
order to answer the questions posed in AQ 3. The analysis ques-
tions AQ 2 and AQ 3 also clearly separate the multi-label clas-
sification tasks from single-label multi-class classification, which
prevents said relationships between labels by definition.

4. Visual Comparison Approach

We propose a visualization approach to address the challenge of
comparing various multi-labeling results. Figure 2 shows the sys-
tem as a whole with its two main sections. The key component is
the enriched tabular representation in the center, which is called re-
sult comparison view. In the bottom part of the screen, the detail
view allows for further investigation of individual items and label
patterns among them.

4.1. Result Comparison View

The main visualization (Figures 1 and 2b) has a tabular layout and
maps the labels in the rows onto the label assignments and rela-
tionships in the respective multi-labeling results in the columns.
Selection of labels and results steers the comparison of data and
modifies which information is highlighted. Certain features can be
turned on or off via controls atop (Figure 2I.a).
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I.b)

I.a)

II.a)

II.b)

Figure 2: The prototype contains four components: I.a) controls to select the dataset and settings that influence the main visualizations, I.b)
the result comparison view in which the labels (rows) and the multi-labeling results (columns) are displayed, II.a) the selection detail view
that shows the distribution of how many labels were assigned to how many items within the current selection (in this case 20 items), II.b) the
item detail view which contains a pixel map of assigned labels to the individual items within the current selection.

4.1.1. Aggregated Label Statistics

For each label, the corresponding name and aggregated statistics
are shown on the left side of the result comparison view (Fig-
ure 1a/b). These statistics can highlight labels to the user that might
be of special interest (e.g., very frequently or infrequently assigned
labels, labels with high disagreement regarding the different multi-
labeling results).

The first value is the average occurrence over all multi-labeling
results. It can indicate the quantitative importance of a label within
the dataset ( AQ 1.1). Errors or misunderstandings are likely to
have a bigger impact on the desired outcome when labels with high
occurrence values are affected by them.

The other value is the disagreement between all multi-labeling
results for assigning a particular label. It is the degree to which the
multi-labeling results deviated on the items assigned with the given
label ( AQ 1.2). More precisely, it is the average pairwise disagree-
ment of multi-labeling results for the label, which is calculated as
the share of items that were assigned the label only by one of the
results. For the i-th multi-labeling result, we define Ri : L→P(C)
to map a label l ∈ L to the set S ∈P(C) of items that were assigned

the label l, where C is the collection of all items in the dataset. The
disagreement regarding the label l can, therefore, be described as

d(l) =


0, if Ri(l) = R j(l) = ∅

1
n

n

∑
i=1

1
n−1

n

∑
j=1
j 6=i

|Ri(l)∪R j(l)|− |Ri(l)∩R j(l)|
|Ri(l)∪R j(l)|

, else

where n is the number of multi-labeling results. If a label was as-
signed to the same items for all multi-labeling results, the disagree-
ment will be 0. Vice versa, the disagreement will be 1 if each item
is assigned the label in only one single result. To visually high-
light labels with high disagreement, the value is also redundantly
encoded using colors from green (low disagreement, ) to red
(high disagreement, ) (Figure 1b).

4.1.2. Label Occurrences and Relationships per Result

Each multi-labeling result is represented on one column, which is
subdivided into two parts (Figure 1c). On the left side are the occur-
rence values for each label, placed in the respective row of the label.
On the right side is a node–link diagram that connects the rows of
two respective labels based on their pairwise overlap relations.

The occurrence values show how often the labels are assigned
within the column’s multi-labeling result. This number represents
|Ri(l)|, the amount of items in the i-th multi-labeling result that was
assigned the respective label l ( AQ 1.1). These values, especially
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Figure 3: The link thickness in the node–link diagram encodes the
size of the overlap of items between the labels l1 and l2, normalized
by the size of the item set of the source label of the link (l1).

when sorted (Section 4.1.4), can already be an indicator towards
suggesting labels to investigate. Furthermore, the value has an in-
fluence on the node–link diagram in the respective column.

The graph shown in the node-link diagram is directed, and the di-
rection of a link is always from left to right. To allow this concept,
the graph is made artificially bipartite, meaning we discern between
each label as a source (first set – on the left) and as a target (second
set – on the right). The two sets of vertices encompass all labels of
the dataset, but edges can only exist between vertices of different
groups (i.e., from source to target). Beck et al. [BPD11] suggested
this technique for graph comparison in order to improve the trace-
ability of edges—and the overall visual scalability eventually—
compared to representations that use arcs as links instead [GBD09].

Two boxes in every row serve as source and target nodes ( ).
The opacity of the boxes encodes the occurrence value for the col-
umn’s multi-labeling result relative to the maximum occurrence
value over all labels and all results (|Ri(l)|/maxi′,l′ |Ri′(l

′)|). This
way, frequent labels in one result will appear more prominent. The
thickness of each link in the diagram encodes the overlap between
two labels, l1 and l2, which is calculated as the asymmetrical Jac-
card similarity

J(l1, l2) =
|R(l1)∩R(l2)|
|R(l1)|

between the connected labels ( AQ 2.1). We chose an asymmet-
rical Jaccard similarity to express subset relationships between the
labels. As illustrated in Figure 3, we can capture similarities where
the set sizes are imbalanced. Judged for the larger set R(l1), the sim-
ilarity might be weak, but for the smaller set R(l2), being almost a
subset of R(l1), it is a much stronger connection—the symmetrical
Jaccard similarity would lose this information. The asymmetrical
similarities might also reveal subset hierarchies among the labels
(e.g., racing bicycle is a subset of bicycle is a subset of vehicle),
including non-perfect subset hierarchies (e.g., bicycle is mostly a
two-wheel vehicle). To reduce clutter, we do not draw all pairwise
links, but blend out weaker connections based on a threshold. The
minimum similarity necessary can be interactively adjusted in the
control panel above the table.

The visualization of multi-labeling results facilitates a compari-
son not only of the values in the table but also the relationships from

the graphs, as the order of labels is the same across all columns.
Due to this, the comparison of outgoing and incoming relationships
with other labels is already partly supported across different multi-
labeling results ( AQ 3.1 and AQ 3.2), but is further eased by
explicitly encoding graph diffs (Section 4.1.5).

4.1.3. Selection

We designed the interactive selection in the result comparison table
to influence the contained visualizations and steer the comparison.
It is interwoven with the colorization—as one of only two features
in the tool. The selection color scheme is consistent throughout the
entire system.

Before any selection is made, the occurrence values and graphs
in the multi-labeling result columns apply a gray color scale. The
user can select one label and one multi-labeling result at a time.
The row of the selected label is then colored in turquoise ( ).
Figure 2 shows how the selection expands over the table cells onto
all associated items like the nodes, incoming and outgoing links in
the graphs for each multi-labeling result, as well as the labels of
individual items (which are later discussed in Section 4.2.2). This
groups all components of the visualization which represent the la-
bel, but also enables the user to better compare properties of the
label in different multi-labeling results ( AQ 3.1).

Selected results, on the other hand, are colored blue ( ) and that
color is also propagated to the associated graph diff feature (more
in Section 4.1.5). If both, a label and a multi-labeling result, are
selected, there is one cell in the table that lays at their intersection.
This can be considered the selected cell, and it is colored black ( )
to clearly contrast it.

Whenever a selection is made, small, partially filled bars, which
we call overlap bars, appear next to the occurrence values in the
result comparison view ( , , and ). The size of a bar encodes
how many of a cell’s items are shared with those of a selected cell
( AQ 1.2). There are three cases to discern, which reflect also in
the color of the bar (Figure 4): (i) Whenever a label and multi-
labeling result are selected, the bar is relative to the selected cell at
their intersection ( ). (ii) If only a label is selected, the bars in
a given column are relative to the cell in the same multi-labeling
result ( ) but in the row of the selected label. (iii) Vice versa, if
only a multi-labeling result is selected, the bars in a given row are
relative to the cell in the same row ( ) but in the column of the
selected multi-labeling result. The overlap bars can indicate special
relationships between labels, like superset relationships. For exam-
ple, the items of the selected cell are a superset of the items in those
cells where the overlap bars are completely filled ( ). Hovering an
overlap bar triggers a tooltip with a detailed description and the
exact size of the overlap.

4.1.4. Ordering and Clustering

By default, the order of labels and multi-labeling results is taken
from the raw data. Additionally, we implemented functionality to
sort the labels in ascending or descending order of the label statis-
tics (Section 4.1.1) or the occurrence values of an arbitrary multi-
labeling result ( AQ 1.1). The sorting can be selected on the header
of the column by which the labels should be sorted.
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Figure 4: a) A row and a column are selected, the black cell ( )
is at their intersection and all black bars are relative to it. For ex-
ample, all 4 items from the top right are among the selected 10
items. b) Only a row is selected, so, within each column, the bars
are relative to the turquoise cell in the same column ( , 21 and
10). c) Only a column is selected, and, within each row, the bars
are relative to the blue cell in the same row ( , 13 and 5).

Alternatively, there are two modes of label clustering, one
of which only considers the multi-labeling result marked as the
ground truth, if available, while the other aggregates all multi-
labeling results. The distances between the labels are calculated
based on vectors that contain either 0 or 1 for each item, depending
on whether the label was assigned to the particular item or not. In
the aggregated clustering mode, the vector for each label is con-
catenated over all multi-labeling results. The metric to determine
the distances between the vectors is the asymmetrical Jaccard simi-
larity, again. We apply the AGNES algorithm [KR09] for clustering
the labels using the above similarity definition, which creates a tree
structure with the labels as leaves. The result contains an inherent
order of leaves, which is then applied to rearrange the rows of the
labels. The new ordering places connected labels closer together
and, as a consequence, makes clusters of similar labels clearer to
see.

In order to further enhance the visibility of clusters, we introduce
gaps between the rows for visual separation (Figure 2I.b). There
are two thresholds that determine the size of the gap between two
labels. Links between clusters become easier to separate from those
within clusters, as the former span over the gaps ( AQ 2.3). If the
links of a multi-labeling result frequently exceed the boundaries of
clusters it can indicate deviance from the basis of the clustering (i.e.
the ground truth or all results combined) ( AQ 3.2).

Clustering of multi-labeling results is also possible and reorders
the columns based on their similarity. It works analogously as de-
scribed above for the label clustering on aggregated results, only
that the label vectors are concatenated by column instead of by row.
Also, differently sized gaps between the columns support the visual
perception of clusters.

4.1.5. Graph Diff

When comparing different graphs, it can be difficult to remember
and trace the equivalent relationships between the labels across the
different columns. We addressed this issue by adding functionality
to diff graphs. If the graph diff is enabled and a multi-labeling result
is selected, the graph in the corresponding column is viewed as the
focus and all other graphs will be adjusted relative to the focused
graph (Figure 2I.b). While the focused graph remains unchanged,

all non-focused graphs are then checked for differences in the graph
links towards the focused one (considering the minimum weight for
an edge to be drawn). Any link in the focused graph will be added to
all other graphs if it does not exist already. To mark the added link,
we use the blue color of the selected column and a dashed line with
short dashes. The opposite case is also implemented. Any link that
exists in a non-focused graph, but no link between the same labels
exists in the focused graph, will also change its appearance. It keeps
its original color but a dash pattern with longer dashes is applied.
This largely keeps the original representation of the graph intact but
adds a visual feature that helps the user understand differences in
the graphs without looking back to the focused column ( AQ 3.1
and AQ 3.2).

4.2. Detail View

Below the result comparison view is the detail view (Fig-
ure 2II.a/b). Whereas the result comparison view abstracts from
the items and aggregates label occurrences, the purpose of the de-
tail view is to allow the user to investigate specifics of the item
selection and individual items.

4.2.1. Selection Detail View

When a multi-labeling result and a label are selected in the result
comparison view, the items that were assigned that label within that
multi-labeling result are selected. We have added a histogram in the
column of each multi-labeling result that shows the amount of items
that were assigned a certain number of labels (Figure 2II.a). This
allows us to see if the label was typically assigned with many other
ones, abstracting from the information of which specific labels it
frequently occurs with. For instance, if the label was typically as-
signed alone, this can explain why there are only few relationships
between it and other labels ( AQ 2.2).

Left of the axis is the number of labels assigned, encoded into
gray pixel marks. The pixel marks are grouped in blocks of five to
make it easier to perceive their number. The bars on the right en-
code the number of selected items that were assigned the respective
number of labels. Above the first pixel marks, if applicable, a bar
represents the number of selected items that were not assigned any
label within that multi-labeling result.

4.2.2. Item Detail View

Below, we list the individual items in the current selection. On
the left, we provide the item name. On the right, aligned in
the multi-labeling results’ columns (Figure 2II.b), are pixel maps
( ) showing the assigned labels for
the item in the respective result. The pixel map has as many slots as
there are labels in the dataset. Each slot stands for one label and the
order is the same as in the result comparison view (only now they
are arranged from left to right). If the label was given to the item
in that multi-labeling result, a square will be shown ( ). In case
the label that is selected in the result comparison view is assigned
to the item, the square will instead be turquoise ( ) ( AQ 1.3).

Upon subselecting an item in the list, the squares for this item
will be replaced by the actual labels given in the multi-labeling
result, where the selected label in the result comparison view will
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Figure 5: One item expanded in the item detail view that shows the
raw image and the assigned labels for two results.

still be highlighted. Furthermore, the raw data item can be shown
if such a view is available. In the case of image classification tasks,
this view contains the original image (Figure 5).

5. Application Examples

To demonstrate our approach, we have applied it to two different
image classification scenarios. One is from the perspective of an
engineer who compares self-built machine learning models, while
the other is from an image recognition challenge, which was held
by AIcrowd [AIc].

Two senior co-authors having longtime experience in visual ana-
lytics worked with the first scenario, while two external machine
learning experts from AIcrowd tested the approach for the sec-
ond scenario. With each user, we performed two sessions. The
first sessions were focused on the discussion of the analysis ques-
tions, as well as the explanation of the prototype and possible im-
provements. After these sessions, the users’ feedback was incorpo-
rated into the implementation. About two weeks later, the second
sessions followed, which were more focused on drawing insights
through the use of the prototype. The users had time to freely ex-
plore the dataset and were later on asked to answer some of the
analysis questions posed in Section 3. The interviews lasted ∼60
minutes per user and session. The sessions were recorded and qual-
itatively analyzed to collect the gathered insights and the provided
feedback.

The following discussion of the examples are based on findings
from the user sessions, however, merged, condensed, and slightly
adapted for clarity and brevity. The general user feedback, imple-
mented improvements, and suggestions for future work are dis-
cussed separately after the examples.

5.1. Detecting Genres from Movie Posters

For the first scenario we selected an old Kaggle challenge [Kag].
The task is to create a model that will assign genres (as labels) to
movies (as items), based on the movies’ posters alone. The actual
movie posters are available, and the ground truth is also included
based on the genres for each movie on the IMDb platform [IMD].
Each of the four studied multi-labeling results represents the classi-
fication of one particular neural network composed of a pre-trained
model combined with a custom classification head. Two of the
models are derived from a TensorFlow tutorial [Mai19], which dif-
fer only in the used loss function of the model (BCE Loss and
F1 Loss). The two other models also use the F1 Loss, but have
twice the number of neurons in the custom head. Lastly, the Limit 3

model is further restricted to assign three genres per movie, as that
is also the case in the ground truth.

Due to the unequal distribution of genres in the training data, we
only considered the top 20 labels, judged by number of movies,
as a small number of examples might be insufficient for a model
to learn the features of a specific genre. We then removed the
movies that were not assigned any of the remaining genres in the
ground truth. The models were trained on the resulting training set
of around 25,000 images. The visualized data in the tool is the val-
idation set and consists of 1,408 previously unseen images.

Looking at the result comparison view (Figure 1) for this sce-
nario, both users quickly identified that the label Drama was as-
signed most often over all multi-labeling results ( AQ 1.1). Three
of the models even assigned the label to every single item in the
dataset, which was also correctly interpreted as explanation for the
relatively low disagreement for the label ( ) by one of the
users. The other user further observed the label occurs only about
half as often within the BCE Loss model and the ground truth.
When selecting the label Drama in the ground truth ( ), it be-
comes evident that those 711 items differ substantially from the 794
items that were assigned the label in the BCE Loss model ( ).
The overlap bar shows that less than half of the items are in both
of these sets, indicating that the results are not as similar as the
occurrence values make it seem ( AQ 1.2).

One observation both users made in the graph visualizations is
a fan-in pattern on the label Drama, meaning that many links exist
from other labels towards Drama. Figure 1 shows this pattern for all
multi-labeling results and the thickness of the incoming lines indi-
cate that there are strong relations, up to a complete subset for some
labels ( AQ 2.1). This is not surprising for those results where
Drama was assigned to all items and, therefore, all other labels
were assigned together with Drama. But looking at the other multi-
labeling results, we see the same pattern, albeit somewhat weaker
for BCE Loss and the ground truth ( AQ 3.1). We can conclude
that Drama is a central label in all results ( AQ 2.2) and the items
it is assigned to are a superset of those for several other labels.

The genre Western in the ground truth does not have any links in
the graph (with the default minimum edge weight of 0.4). Three of
the other multi-labeling results, however, have links going out from
the label. Interested in more details about this, one user selected
the label Western in the ground truth. The 36 items are then se-
lected and can be investigated further in the detail view (Figure 6).
Whereas, in the ground truth, the majority of items were only as-
signed the Western label, the histograms for the other multi-labeling
results show very different distributions ( AQ 3.1) for those 36 im-
ages. For the F1 Loss and Double Neurons results, we can observe
normal distributions around an average of three assigned labels.
The Limit 3 result, as intended by the model, has assigned three
labels to each item. This highlights different labeling strategies of
the created models, none of which led to a high resemblance of the
ground truth.

5.2. AI Food Recognition Challenge

Our second use case is the Food Recognition Challenge by
AIcrowd [AIc]. For this challenge, the contestants were asked to
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Figure 6: A cutout of the detail view when selecting the 36 images with the label Western in the ground truth of our movie genre dataset.
Histograms plotting the number of items onto the amount of labels assigned to them. Below are the first items and their label assignments in
the multi-labeling results shown in the pixel maps.

identify different foods on images. As the set of images used for the
evaluation is kept secret, we did not have access to a ground truth
for the evaluation dataset. However, we also incorporated a debug
dataset that the participants could use to test their models. The de-
bug dataset has been annotated by the organizers of the challenge
and functions here as a ground truth. The raw images from the de-
bug dataset are also available for us to show in our prototype. We
manually selected five of the top 10 submissions that showed dif-
ferent labeling behavior and removed the remaining ones. For the
debug dataset, we then also added the ground truth. The number of
labels was reduced from several hundred to the 20 most frequent, as
they likely have the biggest impact on the results. Among the two
external users who worked with this dataset in our prototype, one
was part of the evaluation team for the challenge, while the other
ranked in the top 10 of the challenge submissions. Both users spent
the majority of the time within the debug dataset and only switched
to the evaluation dataset to confirm that their observations hold for
that dataset as well.

One of the users right away mentioned the colors for the dis-
agreement values to be of high interest for the analysis ( AQ 1.2).
This also led him to start investigating the label Water. From look-
ing at the occurrence value in the ground truth, he quickly inferred
that Water is the most frequent label in the dataset, which aligned
with his experience ( AQ 1.1).

Figure 2I.b shows that one of the strongest relationships in
one of the submission was between the labels Salad and Carrot
( AQ 2.1). Selecting the 20 items for Carrot ( ), the user no-
ticed further incoming and outgoing links from the label Mixed
Salad. He then continued his analysis of these relationships in the
detail view. The user identified a pattern among the pixels maps:
Carrot is not only strongly connected to Salad and Mixed Salad
individually, but there is also a high number of items with all three
labels assigned.

Both users were interested in the comparison between the differ-
ent multi-labeling results on a holistic level and used the graph diff
feature a lot for this. From the evaluator’s perspective, our user se-
lected the ground truth and compared it to the submissions, while
constantly changing the minimum edge weight to check whether
these differences appear for strong and weak overlap relations alike.
The user who participated in the challenge selected one submission
as the basis for the graph diff. He was curious to see how the se-
lected model differs from others, especially, what the other models
were assigning differently ( AQ 3.1).

The clustering result based on the aggregation of all multi-
labeling results yields clusters that appear logical ( AQ 2.3) (Fig-
ure 2I.b). An interesting observation one of our users made is that
the 3rd place submission has a lot of strong links within the clusters,
while it has few that surpass the boundaries of clusters. This is a
pattern that is not as apparent in any of the other results ( AQ 3.2).

In terms of different label assignment strategies, both users
clearly pointed out two submissions that were different from the
others. The submission in 10th place only assigned four of the 20
labels in the dataset at all (Figure 2I.b). The users assumed that the
classifier does not know of the other labels and is just a very sim-
ple model. On the other extreme is the submission that ended up
performing best in the challenge. The model has assigned the most
labels by far, which can be seen in the occurrence values and the
density of the graph (Figure 2I.b). Looking at some specific images
in the detail view, one of our users confirmed that the assignments
are mostly due to underfitting. An example of these faulty label
assignments is shown in Figure 5 ( AQ 1.3). Our user from the
evaluation team recognized this and mentioned that they adjusted
the set of rules for the future challenges because of this behavior.
He concluded that using our prototype would have helped him to
identify this problem more quickly.

5.3. General Feedback

Based on the feedback from the first sessions, we made the inter-
face more self-explanatory and added on-demand explanations as
tooltips. The improvements were well received by the users in their
second sessions. Moreover, the histograms were a suggestion from
one user in the first session. He later used this feature as the main
entry point towards analyzing a specific label. The clustering re-
sult based on the ground truth alone was another suggestion from
one of the users. Also, the pixel map layout in the item detail view
was a suggestion from the first interviews, which allowed for visual
pattern search. That was not possible with our previous version.

In general, the users gave us positive feedback on our approach.
They mentioned several ideas on how our system could help them,
or other users, in working with machine learning approaches. The
comparison of different models could help users decide which ap-
proach they should focus on in their development. Furthermore, if
a ground truth or another baseline is available, our system would
support the users to understand the multi-labeling results more pro-
foundly, which would allow them to make more informed deci-
sions to adjust a model. This could go as far as comparing the same
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model with different hyperparameter combinations. In the context
of AIcrowd, the evaluation expert specifically mentioned using the
system to check for problems within the dataset, and submissions,
to improve future challenges.

The users also mentioned shortcomings of the prototype and
made recommendations for future features. This includes improv-
ing the scalability of the approach with regard to the number of
labels and multi-labeling results. Moreover, one user suggested
sorting the items in the item detail view by disagreement between
multi-labeling results, instead of displaying the items unordered.

6. Discussion and Limitations

The application examples and user feedback have demonstrated
that our approach supports the initially formulated analysis ques-
tions (Section 3). We observed that specifically AQ 3.1 pro-
duces interesting insights in different ways. Moreover, AQ 1.1
and AQ 1.2 are very easy to answer with only a few quick glances
at the result comparison view. In contrast, AQ 2.2 has only shown
shallow insights.

As demonstrated, the approach is applicable to comparing multi-
labeling results, however, with the constraint that the same set of
items are labeled with the same set of labels in all results. This in-
cludes scenarios where different classification algorithms compete,
where variants and configurations of one classification algorithm
are tested, and all other scenarios where multiple sources suggest
a classification using the same labels (e.g., human coders). In con-
trast, this excludes scenarios where each result is based on different
items or the results use different labels, for instance, mining topics
from text documents. While the relevant analysis questions might
be the same or similar for these scenarios, it remains an open re-
search question how similar analyses can be supported for scenar-
ios without a predefined labeling scheme.

Visualization approaches often work best with a certain size of
the datasets. We have designed our approach to show 10–30 labels
and 3–10 different labeling results. For larger numbers of labels
and results, vertical scrolling and long edges as well as visually
squeezed columns or horizontal scrolling would significantly de-
crease the readability of the visualization. To address this issue,
intelligent collapsing and expanding of rows and columns might
increase the scalability by an order of magnitude. Ideas from Table
Lens [RC94] can be applied to implement a multi-focus solution
with different zoom levels for rows, columns, and cells. In addi-
tion, the computed clusters of labels or results could be used to
summarize groups of rows or columns, respectively. Regarding the
number of items, our approach is more flexible. In the examples,
we have represented up to about 1,500 items; showing more items
is only restricted at the moment by the prototype’s performance
when loading the detail view.

Representing overlap of label assignment as a graph structure
is at the center of our approach. It provides the clear advantage
of simplifying set overlap to a more abstract representation. This
abstraction allows to reason about clusters of labels and to iden-
tify high-level similarities and differences between different multi-
labeling results. However, this abstraction also comes along with
two challenges. First, the relationships as a derived property as

well as their bipartite drawing are not straightforward to interpret
and require some explanation. The bipartite drawing is also limited
to pairwise relationships between labels, while higher-order label
combinations cannot be displayed. Second, the graph representa-
tion depends on an edge weight threshold and can become overly
dense or sparse in some examples. We have already tried to address
these challenges by providing textual and visual explanations of
the encoding, integrating an interactive slider for the edge weight
threshold, and applying a diff mode for identifying the exact differ-
ences between the graphs. Our application examples have shown
that, generally, these measures work and relevant findings can be
made using them.

7. Conclusion

With a focus on showing overlap relationships between labels, we
have proposed a visualization approach to analyze and compare
multi-labeling results of different algorithms and sources. The ap-
proach itself is model-agnostic and applicable to all multi-labeling
results with the same labels and the same items. We have trans-
formed this set visualization problem into a graph comparison
problem and visualize the graphs in the columns of our tabular
representation. Dedicated features relating to the clustering of la-
bels (rows) and multi-labeling results (columns), as well as graph
differences and interactive highlighting, support identifying and
comparing structures in these label relationships. In the applica-
tion examples, we have observed differences and similarities in
label assignments and label relationships of multi-labeling results
that would have remained hidden with traditional quantitative eval-
uation methods based on precision and recall. In the future, we
would like to integrate the approach closer into a machine learning
pipeline where the algorithms can be selected, adapted, and fine-
tuned from within in the tool with visual feedback on the learning
process and the general evolution of the model.
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