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Figure 1: Analysis framework depicting eye movement data for different stimuli (columns) and participants (rows) in a tabular grid as word-sized
visualizations. An analyst can choose between different variants of visualizations. On selection of a cell, the framework provides details such as
a description, an enlarged version, and the original stimulus.

ABSTRACT

Word-sized visualizations for eye movement data allow analysts to
compare a variety of experiment conditions or participants at the
same time. We implemented a set of such word-sized visualizations
as part of an analysis framework. We want to find out which of
the visualizations is most suitable for different analysis tasks. To
this end, we applied the framework to data from an eye tracking
study on the reading behavior of users studying metro maps. In
an expert evaluation with five analysts, we identified distinguishing
characteristics of the different word-sized visualizations.

1 INTRODUCTION

Visually analyzing eye movement data, an analyst can pick from a
diverse set of visualizations [6] to study fixation distribution, areas
of interest (AOIs), temporal events, etc. When comparing multi-
ple participants or repetitions based on the same or similar task, an
analyst might juxtapose two or more visualizations. When scaling
down the visualizations to the size of a word, the visual compari-

son can be scaled up to dozens of different conditions and can be
integrated into natural language text or other user interfaces.

In this work, we target at evaluating word-sized visualizations to
find suitable representations for different eye tracking data analysis
tasks. To this end, we implemented previously proposed word-sized
eye tracking visualizations [1] in a small-multiples approach. Like
Figure 1 illustrates, we list participants as rows of a table and differ-
ent stimuli as columns. Each cell shows the respective eye tracking
data in a word-sized visualization, which is enlarged on demand in
a side-bar. The main contributions of this paper are:

• to implement and make available previously suggested word-
sized eye tracking visualizations [1] as part of a Web-based
visual analysis framework (Section 3),1

• to apply these visualizations for partly revisiting an experi-
ment on the readability of metro maps [20] (Section 4), and

• to conduct an expert evaluation comparing these visualiza-
tions regarding different usage scenarios (Section 5).

We start with briefly discussing related work (Section 2) and con-
clude the paper by summarizing results (Section 6).

1https://github.com/Yasett/ETSparklines



Table 1: Selected word-sized eye tracking visualizations.

Point-Based Visualizations

Attention map A gridded attention map that aggregates fixations and
encodes the duration in the darkness of the cells.

Space-time grid The X axis represents a timeline, the Y axis shows X or
Y coordinates of fixations; darkness indicates fixation
durations.

Scan path Path of eye movement with temporal information
represented by the edge colors from blue to purple.

AOI-Based Visualizations

AOI timeline Temporal sequence of viewed AOIs encoded in color
and position, width of the boxes is defined according to
the elapsed time.

Transition arcs Transitions between AOIs (nodes) and aggregated
transitions as weighted links, where the darkness
encodes frequency.

Transition matrix A matrix of transitions between AOIs, where the
darkness of each box encodes the frequency of the
transition.

2 RELATED WORK

Visualizations of eye movement data are various, as Blascheck et
al. [6] surveyed. Techniques comparing eye movement data of mul-
tiple participants typically depict participants in a sequential or-
der [5, 9, 11, 15, 17]. These eye tracking visualizations usually
represent either point-based (i.e., fixation data) [9, 19, 21] or AOI-
based information [10, 11, 12, 13, 22]. We use a variety of point-
based and AOI-based representations depicting them in a matrix
layout to compare multiple participants and stimuli.

Word-sized visualizations or sparklines [23] are representations
scaled to the height of a line of text. Thus, they can easily be inte-
grated into a text or other visual representations to convey further
information. Sparklines have been explored for natural language
text [8, 23], visualizations [7, 18], user interfaces [2, 3], or source
code [2, 4]. We apply them in a tabular representation.

3 WORD-SIZED EYE TRACKING VISUALIZATIONS

Beck et al. [1] discussed existing eye movement visualizations and
how they can be represented as word-sized visualizations. We used
these word-sized eye tracking visualizations in this paper and im-
plemented all suggested fourteen variants. Since some of the orig-
inal visualizations are similar to each other, we selected a sub-
set of six for the analysis framework and evaluation described in
the following. To make a representative selection that works well
together with the studied stimuli, four of the authors rated each
visualization—we took each the best three point-based and AOI-
based visualizations, which are depicted and briefly explained in
Table 1. Some of the visualizations are configurable if they only
show either the X or Y coordinate of the data.

We developed a Web-based analysis framework integrating
word-sized visualizations into a tabular representation (Figure 1).
In contrast to previous work that integrates word-sized graphics
with other data recorded during an experiment [1], we focus here on
the effective representation of eye movement data. The cells of the
table each show a word-sized visualization for a specific stimulus
(column) and participant (row). We assume that all data refers to
the same task per stimulus, which makes results comparable across
participants. The type of word-sized visualization can be selected
from a combo box at the top of the interface. When clicking on a
specific instance of a visualization in the table, details are provided
such as a description of the visualization, an enlarged and labeled
version of the visualization, and a zoomable representation of the
stimulus overlaid with AOI information.

Figure 2: Metro map of Hamburg. Blue and green AOI rectangles
indicate origin and destination of a task, while the other three AOIs
are possible paths a participants could have traced.

Table 2: Identified groups of participants (a–c) applying different
search strategies for stimulus Hamburg; three different visualizations
show each the same two users per group (left and right sparkline).

Group Scan path AOI timeline Transition arcs

(a)
(b)
(c)

4 APPLICATION EXAMPLE

We demonstrate our approach with eye tracking data obtained in a
controlled experiment with 40 participants about reading behavior
of metro maps [20]. Participants were asked to find a route from
an origin to a destination and state the number of transitions they
needed. All maps had the same design but differed in color encod-
ing (color vs. gray-scale) and complexity measured by the number
of nodes. During the experiment, 24 metro maps from all over the
world were used. The statistical evaluation showed that participants
performed better while using colored maps, therefore, we only in-
vestigate data collected of colored maps using word-sized visualiza-
tions. We define AOIs for origin, destination, and for each possible
correct route by defining areas that need to be crossed. Figure 2
shows a sample stimulus with marked origin (green hand), destina-
tion (red target), and AOIs (colored rectangles).

With the help of the visualizations, we separate participants into
different behavioral groups. For the metro map of Hamburg (Fig-
ure 2), we identify three categories of transition complexities in the
transition graph (here showing transition arcs and transition matrix
for each the same participant): (a) three to four transitions links of
AOIs , (b) five to seven , and
(c) more than seven . Table 2 shows samples for
these three groups with different types of visualizations. Partici-
pants in Group (a) found a path from origin to destination quickly
and did not verify it fully . In Group (b), the par-
ticipants performed a final verification more thoroughly

. Finally, in Group (c) there are more complex patterns also
involving verifications of sub-paths as well as tracing and checking
side tracks . We also observe jumping back and
forth to double-check solutions or trying to find alternative routes
in space-time grid visualizations, for example, a participant who
jumped back to the origin two times (X , Y ).



Furthermore, we can infer that some paths were not considered
or other paths were used by most of the participants. It is easy to
see which AOIs participants visited, for instance, in the transition
arcs visualization. In the example of Hamburg, 65% of the par-
ticipants did not look at the bottom left AOI (no arcs to the green
AOI, e.g., ). These participants did not
find that there is a line through this AOI directly connecting origin
and destination. Also, the attention map visualizations allow for
discerning the users who noted the direct connection from
those who did not . This is in accordance with the results of
Huang et al. [14] that people have a geodesic-path tendency while
solving such a task, hence, tend to choose a path that is closer to the
direct connection between two locations. Another surprising out-
come is that about 40% of the participants did not look at the origin
AOI (e.g., ). Reasons for this surprising result could be
that participants noted the big hand symbol only through their pe-
ripheral vision, that we defined AOIs too small, or that the recorded
eye movement data is not accurate enough.

5 EXPERT EVALUATION

We conducted an expert evaluation to compare the usefulness and
effectiveness of the different types of word-sized visualizations. In
particular, we wanted to learn which visualizations are most suit-
able for which tasks and why. We invited five experts to participate
in a semi-structured user study. The experts worked with our frame-
work to re-analyze the data from the eye tracking study described
above. We designed the evaluation to last about 60 minutes per
participant. All questionnaires and results are available as supple-
mental material.2

5.1 Participants and Method
All participants were researchers affiliated with the University of
Stuttgart, including four PhD students and one postdoc (not involv-
ing any co-authors of this paper). Based on self-assessment, all re-
searchers considered their expertise as knowledgeable or expert in
at least two of the three areas: visualization, eye tracking, human–
computer interaction (available options: no knowledge, passing
knowledge, knowledgeable, expert). We refer to them as Expert
1–5 (E1–E5) in the following.

At the beginning of the evaluation and after the self-assessment
of expertise, the participants were provided with a short tutorial
explaining the visualized data, the analysis framework, and the vi-
sualizations. The tutorial included an oral introduction and a brief
tool demo using a small sample of three stimuli (disjoint from those
used in the later main phase).3 Then, the experts were allowed to
familiarize themselves with the tool for a few minutes. In this in-
troduction and during the whole evaluation, experts were allowed
to ask questions at any time. Throughout the experiment, we used
a setup with two monitors, one showing the visual analysis frame-
work, the second one showing the required questionnaires. While
filling in the questionnaires, the experts could go back to the tool.

For the main part of the study, the experts re-analyzed data from
the described eye tracking experiment based on nine stimuli.4 The
stimuli were selected to cover all levels of complexity and diffi-
culty as defined in the original study [20]. Their task was to investi-
gate the data and, for instance, look for “common patterns, outliers,
surprising results, search strategies, clusters, etc.” For each visu-
alization type, three open-ended questions asked them to describe
(i) their findings, (ii) what they liked about the visualization, and
(iii) what they disliked and would suggest as improvements. We
asked them to proceed after answering all questions or if they spent
more than ten minutes with one visualization. We randomized the
order of visualizations for every expert.

2http://etsparklines.fbeck.com/etvis16-suppl.zip
3http://etsparklines.fbeck.com/pre_study.html
4http://etsparklines.fbeck.com/main_study.html

At the end, we asked the experts to rate the six visualization
types according to different tasks. Kurzhals et al. [16] presented
a taxonomy of analysis tasks applied to eye movement data. We
use their high-level classification of tasks for our evaluation, in par-
ticular, the three main types of tasks: where (space-related tasks,
e.g., “Where did a participant look?”, “What information did a par-
ticipant see?”, “How long did a participant look at a specific posi-
tion?”), when (time-related tasks, e.g., “When was something in-
vestigated?”, “When did a fixation start/end?”, “When did viewing
behavior change?”), and who (participant-related tasks, e.g., “Who
showed a certain viewing behavior?”, “Who had a different/similar
viewing behavior?”, “How many participants had a similar view-
ing behavior?”). Moreover, the experts had the opportunity to give
other comments in a text field.

5.2 Results

We first summarize the experts’ comments regarding the individ-
ual visualization types and then evaluate the comparative ratings
provided in the final questionnaire. The summaries focus on de-
scribing central findings and statements, but we could not include
all comments of the experts.
Attention map – Findings: E2, E3, E4, E5 described lo-
cations that received high attention. E3, E4, E5 noted special prop-
erties in the spatial distribution of attention. Positive: E2, E3, E4,
E5 highlighted that the visualization showed well how long partic-
ipants looked at a certain location. E1, E2, E5 considered the visu-
alization to be easy to understand or use. Negative: E2, E5 missed
temporal information. E1, E3, E5 liked to see the mapping to the
stimulus. Improvements: E1, E3, E5 suggested showing the stimu-
lus in the background of the visualization or (E5) at least origin and
destination as reference points.
Space-time grid – Findings: E2, E4 identified search
strategies of participants and E2 analyzed their task completion
time. E3, E5 noted relative spatial locations of origin and destina-
tion. Positive: E2, E3 highlighted the effectiveness to find spatio-
temporal patterns simplified to one spatial dimension. E4 remarked
that the word-sized visualization was already sufficient and the en-
larged version was not needed. Negative: E1, E3, E5 found the vi-
sualization misleading because of the mapping of dimensions and
E2, E5 criticized spatial patterns were obfuscated because either the
X- or Y-dimension was shown. Improvements: E1, E2 suggested
using the Y-axis for time if the visualization is intended to show the
X-dimension spatial data.
Scan path – Findings: E1, E2, E4 identified points of
interest and E5 spatial patterns. E2, E4, E5 noted specific search
strategies. E1 found stimuli with fewer distractors. Positive: E1,
E5 found it easy to retrieve spatial positions. E2 highlighted that
one easily saw search strategies and inefficient participants. E4 ap-
preciated to see both space and time in one visualization. Negative:
E1 noticed cluttered lines. E2, E4, E5 criticized the color coding,
that it did not work for complex lines (E2, E4) and that the direction
was hard to interpret (E5). Improvements: E2 suggested combining
close fixations. E5 wanted to use a different color map and mark
origin and destination in the visualization. E5 also recommended
an interactive restriction of the displayed time span.
AOI timeline – Findings: E2, E3, E4 observed specific
search strategies and patterns. E2, E5 identified AOIs that attracted
considerable attention and E1, E4, E5 AOIs that received no at-
tention. Positive: E1 found the visualization to be “informative”,
E3 “easy to interpret”, E4 “very useful”, and E5 to provide “good
overview”. E2 appreciated that the AOIs abstracted from actual
spatial coordinates. Negative: E1, E2, E3 did not appreciate the
redundancy in encoding AOIs in position and color. E5 missed spa-
tial information that would allow reconstructing the scan path. Im-
provements: E3 suggested making the AOIs fill the full height of



Table 3: Expert ratings of word-sized eye tracking visualizations with
respect to different groups of tasks.

Task

Where? ++ + ++ ◦ −− −−
When? −− + + ++ −− −−
Who? ++ + ++ ++ ◦ ◦

Overall + ◦ + ++ − ◦

the visualization and E5 suggested making the AOIs selectable and
highlighting the selected one.
Transition arcs – Findings: E2, E3, E5 noted different
densities of graphs. E4 further observed that participants transi-
tioned much between intermediate AOIs. E5 spotted an outlier
without any transitions. Positive: E1, E5 positively mentioned the
arcs to represent transitions and E4 considered the encoding of fre-
quencies as an advantage. Negative: E4, E5 noted that the exact
temporal order of transitions was lost. E2 wished an indication of
edge direction, but maybe missed that the direction of links was en-
coded in their placement (top: left to right; bottom: right to left).
E1, E5 perceived some examples as cluttered. Improvements: E1,
E2, E3, E5 suggested integrating or linking the visualization with
spatial information. E5 recommended scaling the AOI nodes ac-
cording to dwell times and using color instead of a gray scale for
encoding frequencies.
Transition matrix – Findings: E3 observed different
densities of graphs. E3, E4, E5 noted specific transition patterns
and frequencies. Positive: E2 found it easy to identify similar
search strategies, E3 to read the individual transitions, E4 to get an
overview of transition distributions, and E5 to compare transition
frequencies and number of transitions. Negative: E1 had problems
understanding the visualization, E2 said it was “hard to interpret”.
E2, E4 missed information on timing. E5 found the colors on the
axes distracting and the visualization not scalable for a larger num-
ber of AOIs. Improvements: E3 suggested interactively linking the
visualizations. E5 would have preferred to use other identifiers at
the axes and color to encode transition frequencies.
Ratings – The final comparative ratings provide a relative judgment
of the visualization types. The results summarized in Table 3 are
(mathematically) rounded average ratings on a 5-point scale from
(−−) not useful at all to (++) very useful. We observe clear differ-
ences in the experts’ ratings between visualization types: Overall,
the AOI timeline performed best (++), followed by the
attention map and the scan path (+). No visual-
ization received the highest rating (++) in all tasks. We note, for in-
stance, that the attention map and the scan path
seem to be suitable for space- and participant-related tasks (when
and who). An AOI timeline , by contrast, could much bet-
ter reveal time-related aspects (when), but also supports participant-
related tasks (who). The space-time grid received average
ratings with respect to all tasks (+ for each task, ◦ overall). The
two transition graph representations might only
be suitable to some extent (◦) for who questions, but not for where
and when questions (−−).

As further comments, E3 and E5 suggested a stronger link be-
tween the visualizations and stimuli, for instance, by interactive se-
lection. E5 added that the special aspect ratio we apply to the vi-
sualizations to make them word-sized was distracting, particularly
if the stimulus had a totally different aspect ratio. Visualizations
that show multiple participants in one representation and ordering
of participants could further improve the analysis framework (E5).

5.3 Threats to Validity
The results are based on subjective ratings of the experts and sub-
jective interpretation of the authors. By choosing experts instead of

arbitrary users, we tried to counterbalance to some extent: we be-
lieve that these experts could make quite informed, objective judg-
ments on the provided visualizations. In general, as a qualitative
analysis with few users, the evaluation is constrained to qualitative
findings and cannot make any judgment on quantitative measures
such as accuracy or efficiency of usage of the different visualiza-
tions. Moreover, we only compared the different visualization with
one data set as part of a specific analysis framework. Other data
sets, a different embedding, or a comparison to other visualizations
could influence the results.

5.4 Discussion and Guidelines
Based on the results from the application example and expert eval-
uation, we discuss our findings and condense them into guidelines.
The tested visualizations helped identify diverse information from
eye movement data, for instance, spatial distribution of attention,
search strategies (spatio-temporal patterns), groups of participants,
transition patterns, or outliers. These could not be found with a
single visualization technique, but only with a set of complement-
ing ones, covering spatial point-based data, temporal information,
AOIs, and AOI transitions. All visualizations showed unique ad-
vantages and disadvantages.

Guideline 1 – If possible, use a diverse set of visualizations.

Sometimes, however, there is only little space, like in the cells
of our tabular representation. Then, the user has to switch between
visualizations to get the full picture. Hence, we formulate the fol-
lowing guidelines based on the comparative ratings:

Guideline 2 – To cover all main tasks (where, when, and
who), use an AOI timeline plus an attention
map or a scan path visualization.

Guideline 3 – If you need to focus on one visualization, use a
scan path or an AOI timeline visualization.

Although the ratings of the transition graph representations are
quite low, the application example showed that there are scenarios
where they provide relevant insights. The low ratings, also for the
space-time grid visualization, might partly be influenced by misin-
terpretations of some users. Hence, it would be important to first
train users how to read these visualizations.

6 CONCLUSION

Our application example and expert evaluation contrast previously
suggested word-sized visualizations of eye movement data. The re-
sults suggest guidelines which visualizations can be used for differ-
ent analysis tasks. The introduced Web-based analysis framework
brings these visualizations into practical application.

ACKNOWLEDGEMENTS

We thank all participants of the expert evaluation for their time
and valuable feedback. Fabian Beck is indebted to the Baden-
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