
EUROVIS 2019/ J. Johansson, F. Sadlo, and G. E. Marai Short Paper

Label Placement for Outliers in Scatterplots

H. Mumtaz †1, M. van Garderen2, F. Beck3, and D. Weiskopf1

1VISUS, University of Stuttgart, Germany
2University of Konstanz, Germany

3paluno, University of Duisburg-Essen, Germany

Abstract
In many application scenarios, outliers can be associated with specific importance for various reasons. In such cases, labeling
outliers is important to connect them to the actual semantics of the respective entity. In this paper, we present a cost-based
greedy approach that places labels with outliers within scatterplots. The approach uses a search strategy to find the position
that represents the least cost to place labels. Our approach can also produce different labeling outcomes by adjusting the
weights of the criteria of the cost function. We demonstrate our approach with scatterplots produced from object-oriented
software metrics, where outliers often relate to bad smells in the software.

CCS Concepts
• Human-centered computing → Visualization; Visualization application domains; Information visualization;

1. Introduction

Outliers are individual data points that discern themselves from the
rest of the data with respect to a relevant measure. They can be im-
portant in data analysis for various reasons, for instance, because
they indicate remarkable individuals (both good and bad) or prob-
lems with data recording and processing. Whereas visualization re-
search has discussed clusters (i.e., groups of similar data points) in
detail already, we observe that the visual representation and mark-
ing of outliers have not yet received the same level of attention.

This work studies the particular problem of labeling outliers in
scatterplots. It is motivated by the analysis of code quality metrics
in software projects. We use scatterplots to find problematic data
points that show up as visual outliers. Labels are crucial in this
scenario because they connect the data points to the semantics of
the respective data entity. However, we did not find an existing ap-
proach that properly handles this scenario, which is different from
labeling applications in previous work: (i) data points that need to
be labeled are in low-density areas and (ii) non-outlier points exist
as potential obstacles that should not overlap with labels.

We suggest an algorithm for this outlier labeling problem that
places the labels next to the point or, if the label needs to be placed
at some distance, it draws a leader between the label and the point.
Various criteria are considered such as the distance of the label to
the point or different kinds of overlap between labels, leaders, and
points. Each criterion is weighted (to adjust its influence on the la-
beling layout) and linearly aggregated into the overall cost func-

† Corresponding author

tion. We demonstrate the practical applicability of the approach
with object-oriented software metrics data, where outliers are re-
lated to bad smells. Bad smells are introduced because of inappro-
priate design or implementation decisions during software develop-
ment [Fow18]. Moreover, we show how the weights of the criteria
of the cost function can be tuned to optimize for different label-
ing results. Figure 1 shows a labeling result for the outliers (de-
picted as) regarding the two software metrics coupling between
objects (cbo) and response for class (rfc).

2. Related Work

The automated placement of labels on maps and other visualiza-
tions has been studied for decades. Most variants of the labeling
problem are NP-hard [FW91, MELS95], but many heuristic ap-
proaches have been proposed [WS09, DKMT07]. Most of these
approaches place labels either adjacent to the points or around
the perimeter of the visualization, but for our application, methods
that combine adjacent and distant labels, are of more interest. The
particle-based labeling method by Luboschik et al. [LSC08] is a
fast heuristic that uses adjacent labels for as many points as possible
and distant labels for the remaining points. A drawback of this ap-
proach is that it may result in many crossings between leaders. The
clutter-aware labeling approach by Meng et al. [MZLL15] places
labels with minimal visual clutter, as specified by a cost function.
However, when an area is considered too cluttered, labels are sim-
ply left out. To the best of our knowledge, none of the existing
methods aim specifically at labeling the outliers of a visualization.

Several techniques—such as minimum spanning tree [JTS01,
LYCG08], k-means clustering [PDN11,IH93], and k-nearest neigh-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

H. Mumtaz, M. van Garderen, F. Beck, & D. Weiskopf / Label Placement for Outliers in Scatterplots

Figure 1: Labeling outliers in a scatterplot of coupling between
objects (cbo) and response for class (rfc). Non-outlier classes are
not labeled.

bors [HKF04, ABP06, AP02, Agg15]—are employed to detect out-
liers. We adopt the k-nearest neighbors approach to detect outliers
in scatterplots. The k-nearest neighbors technique discern outliers
by ranking the data points in terms of distance from the k nearest
neighbors. Some techniques use visualizations for outlier analysis,
for instance, Bernard et al. [BDSF17] present a visual interactive
system for analyzing outliers. Their system also allows users to vi-
sually compare the results of different outlier analysis algorithms.

3. Algorithm

We propose a cost-based greedy approach that searches for the best
possible position to place labels with outliers. The approach places
one label after the other without changing the layout of already
placed labels.

Outliers are determined using the k-nearest neighbor method as
an estimation of local density. We use the Euclidean distance to
compute the distance between a point and its k nearest neighbors.
If this distance is larger than a threshold, the point is classified as
an outlier. We apply the Euclidean distance in image space so that
the impact of non-normalized data on distance computation can be
minimized.

Let N be the set of n points in the visualization, and let M ⊆
N be the subset of m points (outliers) that should be labeled. The
input consists of N and M, with coordinates (xi,yi) for each point
pi ∈ N. Furthermore, each point pi ∈ M has an associated label li
with dimensions wi× hi. The output should consist of coordinates
(x′i ,y

′
i) for each label that could be placed.

3.1. Cost Function

A cost function is used to compare placement options and the alter-
native with the lowest cost is chosen. We define the cost Ci(x′,y′)
as a linear superposition of four terms—Coverlap, Cbu f f er, Cdistance,

Table 1: Terms of the cost function Ci(x′,y′).

Term Description

Coverlap overlap of the label li with outliers M, non-outliers
N\M, and other labels.

Cbu f f er overlap of the label buffer of li with outliers M and
overlap of the leader buffer with outliers M, non-
outliers N\M, and labels.

Cdistance distance between point pi and its label li.

Cposition position of the label within the chart space and with
its relative position with respect to the position of the
point in the scatterplot.

and Cposition (see Table 1)—for placing label li at position (x′,y′).
Each term is the weighted linear aggregation of some criteria, for
instance, to achieve legibility of all labels, three types of overlap
are defined in Coverlap: First, the number of points in M (outliers)
that are covered by li; second, the number of points in N\M (non-
outliers) covered by li; the third takes into account the number of
previously placed labels covered by li to prevent label-label over-
laps. The influence of each term of the cost function on the labeling
layout can be controlled by adjusting the weights of the underlying
criteria defining the term.

To avoid confusion about which label belongs to which point,
leaders should not cross or be very close to other points or labels.
To achieve this, we define a leader buffer as the area directly sur-
rounding the leader, as shown in Figure 2. Furthermore, a label that
is placed in close proximity to other points in M might make it un-
clear to which of them the label belongs. Therefore, we also intro-
duce a label buffer (30% of the label height) around the bounding
box of label li. Cbu f f er uses label and leader buffers to include four
criteria: the first relates to the overlap of the buffer of label li with
the number of points in M; the second incorporates the overlap of
the leader buffer with the number of points in M; the third checks
the number of points in N\M contained in the leader buffer of li;
and the fourth is concerned with the number of labels intersecting
the leader buffer of li.

The leader is constructed by connecting pi to the center of li and
cutting the line segment off at its intersection with the bounding
box of the label, as illustrated in Figure 2. Cdistance represents the
length of the leader.

yi

xi

’

’

pi

li

xi

yi

d
i

 hi

wi

leader buffer label
buffer

Figure 2: Point pi at position (xi,yi) with its label li of size wi×hi
at position (x′i ,y

′
i), with distance di between pi and li.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

H. Mumtaz, M. van Garderen, F. Beck, & D. Weiskopf / Label Placement for Outliers in Scatterplots

Finally, it is desirable to place labels only within a pre-defined
chart area and in a position where they are less likely to later be in
the way of other labels. To include these criteria, we define Cposition
in our cost function. Since we are labeling outliers, we consider a
model where we prefer to place the labels toward the outside of
the visualization. This means that the preferred relative position of
the label with respect to the point depends on the relative position
of the point in the overall visualization. If the point is in the left
half of the visualization, we prefer to place the label to the left
of the point, and for points in the right half of the visualization,
we prefer to place the label to the right of the point. Similarly, we
consider the top and bottom relative positions. It is also undesirable
to place labels far outside the chart area, so the respective criterion
of Cposition restricts the labels to be in a pre-defined area of the
scatterplot.

3.2. Search Strategy

To find the best position of a label for each outlier, we need to
evaluate the cost function at the potential label positions. Since an
exhaustive search among all possible pixel positions would be com-
putationally expensive, we only check a sample of promising loca-
tions. For this, we consider a circular range around the position
to label (points outside this area are unlikely to produce low costs
when taking into account the leader length). More specifically, we
use a grid-based search strategy based on a radial grid with its cen-
ter at the outlier position. Incrementing the radius by 30% in each
iteration, we vary the angle in 100 steps per radius. We stop after 20
iterations and label the point with the label that produced the low-
est cost among the searched positions. While this option produced
good results in acceptable time in our experiments, other search
heuristics are applicable and might be more efficient. Finding the
best search heuristic, however, was out of scope for this paper.

4. Application Example

We use object-oriented software metrics to draw scatterplots and la-
bel classes of the redactor1 software project. Each data point in the
dataset represents a software class and the label is the name of the
class. Mumtaz et al. [MBW18] investigated the connection between
outliers and bad smells. They observed that software classes that are
depicted as outliers in visualizations are potentially associated with
a higher probability of carrying bad smells. We take this connection
of outliers and bad smells as a motivation to label software classes
that are depicted as outliers in scatterplots. Figure 1 and Figure 3
show outliers with labels in two different scatterplots. The scatter-
plots are built with coupling between objects (cbo) in two different
combinations: one with response for class (rfc) and the other with
weighted method per class (wmc). These software metrics are com-
monly used to detect bad smells in software projects [OKSB13].
For instance, high weighted method per class (wmc) value indi-
cates the possibility of the existence of the large class bad smell. In
Figure 3, classes with relatively high wmc—depicted in less dense
regions (outlier regions)—have the high probability of carrying the

1 https://doi.org/10.5281/zenodo.322445

large class bad smell, therefore, these classes are important and we
label them.

It may be required in an application scenario to change the num-
ber of data points that need labels. Our approach provides the con-
trol of changing the number of data points by adjusting the thresh-
old value for outliers. In Figure 4, the number of labeled points is
increased (in relation to Figure 3) by reducing the threshold value.
In Figure 4, we label the maximum number of outliers before we
start to see the overlaps. At the moment, it has only one overlap
(i.e., a leader is overlapping non-outlier points).

Figure 3: Labeling outliers for dimensions coupling between ob-
jects (cbo) and weighted method per class (wmc).

Figure 4: The number of labeled outliers are increased with respect
to Figure 3.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

H. Mumtaz, M. van Garderen, F. Beck, & D. Weiskopf / Label Placement for Outliers in Scatterplots

5. Impact of Weights of Cost Function

We tested our approach with multiple software datasets to find the
weights of the criteria of the cost function that can be used as de-
fault. Although it is difficult to optimize the weights that can work
in every scenario, we tried to obtain default values that can gener-
ate relatively acceptable labeling results. We tried to prioritize the
terms of our cost function so that the weights of relatively important
criteria are set to high, for instance, avoiding overlap of labels is
more important than reducing leader length. We saw a few scenar-
ios where the default weights could not produce desired outputs—
overlaps are observed. In such cases, the weights can be tailored.

We observe a few cases where overlaps hinder in inferring the
labeling output. For instance, in Figure 5, a leader is overlapping a
label RequestWrapper. To remove this, we increase the weight of
the label-leader overlap of Cbu f f er. As a result, the overlap of label
RequestWrapper and leader is removed (shown in Figure 6). How-
ever, as a result of this change, a new overlap of non-outliers and
label ArticleDetailsModel is introduced. We increase the weight of
the respective criterion (non-outliers covered by label) in Coverlap to
remove these non-outliers and label ArticleDetailsModel overlap.
The resulting output, depicted in Figure 7, shows that the label Ar-
ticleDetailsModel is moved to remove its overlap with non-outliers.

To show that our method can generalize to arbitrary scatterplots,
we produce a labeling result from the data2 about mental disorders
in the United States. It can be seen in Figure 8 that the median
income is negatively correlated with the mental disorder, however,
there are a few outliers that could explain some unusual behavior.
For instance, New Hampshire falls into high-income category, but
people from this state still experience high mental disorders.

6. Conclusion and Future Work

In this paper, we presented a cost-based greedy approach that places
labels with outliers because we argue that outliers can be of interest
for various reasons. The weights of criteria in the cost function can
be adjusted to produce different labeling results in different appli-
cation scenarios. We demonstrated our approach with scatterplots
produced from object-oriented software metrics. First, we showed
the results specific to a software engineering application, where we
labeled outlier classes that are potentially prone to bad smells. We
also illustrated the removal of overlaps by varying the weights in
our cost function. In our future work, we aim to assess the general-
izability of labeling outliers in other point-based visualizations. We
also plan to prioritize the order in which labels can be placed.

Acknowledgements

F. Beck is indebted to the Baden-Württemberg Stiftung for the fi-
nancial support of this research project within the Postdoctoral Fel-
lowship for Leading Early Career Researchers. M. van Garderen
was funded by the European Research Council (ERC) under the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-2013)
/ ERC grant agreement no 319209 (project NEXUS 1492).

2 https://www.urban.org/research/publication/geographic-patterns-
disability-insurance-receipt

Figure 5: Label-leader overlap: the leader of the label ArticleDe-
tailsModel passes through RequestWrapper.

Figure 6: Label-leader overlap is removed by increasing the
weight of the respective criterion in Cbu f f er, but the label Arti-
cleDetailsModel is now covering non-outliers.

Figure 7: Label and non-outliers overlap is removed.

Figure 8: Negative correlation between mental disorders and me-
dian income in the United States mental disorders data, with a few
outliers (e.g., New Hampshire).

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

H. Mumtaz, M. van Garderen, F. Beck, & D. Weiskopf / Label Placement for Outliers in Scatterplots

References
[ABP06] ANGIULLI F., BASTA S., PIZZUTI C.: Distance-based De-

tection and Prediction of Outliers. IEEE Transactions on Knowledge
and Data Engineering 18, 2 (2006), 145–160. doi:10.1109/TKDE.
2006.29. 2

[Agg15] AGGARWAL C. C.: Outlier Analysis. In Data Mining (2015),
Springer, pp. 237–263. doi:10.1007/978-3-319-14142-8_8.
2

[AP02] ANGIULLI F., PIZZUTI C.: Fast Outlier Detection in High Di-
mensional Spaces. In European Conference on Principles of Data
Mining and Knowledge Discovery (2002), Springer, pp. 15–27. doi:
10.1007/3-540-45681-3_2. 2

[BDSF17] BERNARD J., DOBERMANN E., SEDLMAIR M., FELLNER
D. W.: Combining Cluster and Outlier Analysis with Visual Analytics.
In EuroVis Workshop on Visual Analytics (2017), Sedlmair M., Tominski
C., (Eds.), The Eurographics Association. doi:10.2312/eurova.
20171114. 2

[DKMT07] DOGRUSOZ U., KAKOULIS K. G., MADDEN B., TOLLIS
I. G.: On Labeling in Graph Visualization. Information Sciences 177,
12 (2007), 2459–2472. doi:10.1016/j.ins.2007.01.019. 1

[Fow18] FOWLER M.: Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 2018. 1

[FW91] FORMANN M., WAGNER F.: A Packing Problem with Ap-
plications to Lettering of Maps. In Proceedings of the 7th Annual
Symposium on Computational Geometry (1991), ACM, pp. 281–288.
doi:10.1145/109648.109680. 1

[HKF04] HAUTAMAKI V., KARKKAINEN I., FRANTI P.: Outlier De-
tection using K-nearest Neighbour Graph. In Proceedings of the 17th
International Conference on Pattern Recognition (2004), vol. 3, IEEE,
pp. 430–433. doi:10.1109/ICPR.2004.1334558. 2

[IH93] IGLEWICZ B., HOAGLIN D. C.: How to Detect and Handle Out-
liers, vol. 16. Technometrics, 1993. doi:10.1080/00401706.
1994.10485810. 1

[JTS01] JIANG M.-F., TSENG S.-S., SU C.-M.: Two-phase Cluster-
ing Process for Outliers Detection. Pattern Recognition Letters 22, 6-7
(2001), 691–700. doi:10.1016/S0167-8655(00)00131-8. 1

[LSC08] LUBOSCHIK M., SCHUMANN H., CORDS H.: Particle-based
Labeling: Fast Point-feature Labeling without Obscuring other Visual
Features. IEEE Transactions on Visualization and Computer Graphics
14, 6 (2008), 1237–1244. doi:10.1109/TVCG.2008.152. 1

[LYCG08] LIN J., YE D., CHEN C., GAO M.: Minimum Spanning
Tree Based Spatial Outlier Mining and its Applications. In International
Conference on Rough Sets and Knowledge Technology (2008), Springer,
pp. 508–515. doi:10.1007/978-3-540-79721-0_69. 1

[MBW18] MUMTAZ H., BECK F., WEISKOPF D.: Detecting Bad Smells
in Software Systems with Linked Multivariate Visualizations. In IEEE
Working Conference on Software Visualization (2018), IEEE, pp. 12–20.
doi:10.1109/VISSOFT.2018.00010. 3

[MELS95] MISUE K., EADES P., LAI W., SUGIYAMA K.: Layout Ad-
justment and the Mental Map. Journal of Visual Languages & Comput-
ing 6, 2 (1995), 183–210. doi:10.1006/jvlc.1995.1010. 1

[MZLL15] MENG Y., ZHANG H., LIU M., LIU S.: Clutter-aware La-
bel Layout. In IEEE Pacific Visualization Symposium (2015), IEEE,
pp. 207–214. doi:10.1109/PACIFICVIS.2015.7156379. 1

[OKSB13] OUNI A., KESSENTINI M., SAHRAOUI H., BOUKADOUM
M.: Maintainability Defects Detection and Correction: A Multi-
objective Approach. Automated Software Engineering 20, 1 (2013), 47–
79. doi:10.1007/s10515-011-0098-8. 3

[PDN11] PAMULA R., DEKA J. K., NANDI S.: An Outlier Detec-
tion Method Based on Clustering. In 2nd International Conference
on Emerging Applications of Information Technology (2011), IEEE,
pp. 253–256. doi:10.1109/EAIT.2011.25. 1

[WS09] WOLFF A., STRIJK T.: The Map-labeling Bibliography.
http://ill.www.ira.uka.de/map-labeling/bibliography/ (2009). 1

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

http://dx.doi.org/10.1109/TKDE.2006.29
http://dx.doi.org/10.1109/TKDE.2006.29
http://dx.doi.org/10.1007/978-3-319-14142-8_8
http://dx.doi.org/10.1007/3-540-45681-3_2
http://dx.doi.org/10.1007/3-540-45681-3_2
http://dx.doi.org/10.2312/eurova.20171114
http://dx.doi.org/10.2312/eurova.20171114
http://dx.doi.org/10.1016/j.ins.2007.01.019
http://dx.doi.org/10.1145/109648.109680
http://dx.doi.org/10.1109/ICPR.2004.1334558
http://dx.doi.org/10.1080/00401706.1994.10485810
http://dx.doi.org/10.1080/00401706.1994.10485810
http://dx.doi.org/10.1016/S0167-8655(00)00131-8
http://dx.doi.org/10.1109/TVCG.2008.152
http://dx.doi.org/10.1007/978-3-540-79721-0_69
http://dx.doi.org/10.1109/VISSOFT.2018.00010
http://dx.doi.org/10.1006/jvlc.1995.1010
http://dx.doi.org/10.1109/PACIFICVIS.2015.7156379
http://dx.doi.org/10.1007/s10515-011-0098-8
http://dx.doi.org/10.1109/EAIT.2011.25

