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Abstract—Software is modularized to make its high complexity
manageable. However, a multitude of modularization criteria
exists and is applied. Hence, to extend, reuse, or restructure
a system, it is important for developers to understand which
criteria have been used. To this end, we provide an interactive
visualization approach that compares the current modularization
of a system to several software clustering results. The visu-
alization is based on juxtaposed icicle plot representations of
the hierarchical modularizations, encoding similarity by color.
A detailed comparison is facilitated by an advanced selection
concept. Coupling graphs, which form the basis for software
clustering, can be explored on demand in matrix representations.
We discuss typical modularization patterns that indicate criteria
used for structuring the software or suggest opportunities for
partial remodularization of the system. We apply the approach
to analyze 16 open source Java projects. The results show
that identifying those modularization patterns provides valuable
insights and can be done efficiently.

I. INTRODUCTION

Like signposts at a street, the modularization of a soft-
ware system acts as a guide to understand and navigate a
software system. However, the information provided is often
quite sparse: modules carry a name and are subdivided into
submodules. Information on what was the criterion to create
the module is often missing. Different strategies might have
been applied for different parts of the system—metaphorically
speaking, a modularization is a patchy mix of signposts,
sometimes rather misleading than guiding.

Software clustering approaches automatically derive a con-
sistent modularization based on predefined criteria. However,
software clustering techniques share a number of unsolved
issues: First, replacing a historically grown modularization
by an artificially created one destroys the mental map of
the system that the developers have developed over time.
Second, it is hard to automatically come up with meaningful
names for automatically generated modules. Finally, there are
several criteria to structure a software system—the clustering
algorithm usually follows a single criterion (or a mix of few).
The process always recommends only one solution.

Our approach breaks with this one-fits-all paradigm of
software clustering. It accepts that there exist competing valid
modularizations of software systems that developers mix into a
single software modularization applying different criteria. We
also acknowledge the efforts that developers have already in-
vested into structuring the system—the current modularization
is the primary artifact visualized by our approach. We provide
support for understanding the criteria used to modularize the

system. Our visualization compares the current modularization
to different computationally derived modularizations.

With this approach, we aim to support both software devel-
opers and software engineering researchers:

o Use Case I (Developer): To extend, reuse, or remodu-
larize parts of the system, a developer needs to identify
and understand the individual criteria that were applied
to construct a specific module.

o Use Case II (Researcher): To study how modularization
criteria are applied in practice, software engineering re-
searchers want to study typical patterns of modularization
across different projects.

While our approach is generic enough to work with any
hierarchical structure of software systems, we focus on Java
systems as a specific example. In Java, classes and interfaces
are organized into a hierarchical package structure.

In our interactive visualization (Figure 1), we represent the
package structure and clustered modularizations as hierarchies,
where the package structure is always placed to the left. We
use space-efficient icicle plots [1] as hierarchy representations,
which employ subdivided and stacked boxes to represent
hierarchical containment. The color coding of the hierarchy
elements indicates similarities of packages to any of the
modules derived by clustering, and vice versa. An advanced
selection concept allows for investigating those similarities in
detail—a sidebar on the right provides further information on
the current selection. We implemented our approach in a Web-
based system called ClusterCompare; a demo of the system
including the analyzed data is available online.'

In this work, we first give an overview of software clustering
and visual support to compare hierarchies (Section II). We
then explain the visual encoding and interactions that comprise
our visual comparison approach of software modularizations
(Section IIT). This visual analysis approach can be leveraged
for identifying typical modularization patterns (Section IV).
Finally, we present results gained by using the approach for
studying 16 open source software projects (Section V) and
arrive at our conclusions (Section VII).

II. RELATED WORK

Software clustering is a well-studied area of software
engineering research. Traditionally, structural dependencies
like method calls have been used to automatically obtain a

Thttps://clustercompare.jan-melcher.de/
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modularization of the software system using clustering algo-
rithms [2], [3], [4], [5], [6]. However, code entities are not only
grouped due to their structural embedding, but the design of
modules might incorporate domain-specific knowledge, code
similarity, or historic creation and changes of the source code.
Hence, employing other code coupling definitions produces
meaningful clustering results as well, such as using seman-
tic similarity of the vocabulary used in the code (semantic
similarity) [7] or co-changes of code entities (evolutionary
coupling) [8], [9], [10]. Combinations of these couplings
often produce better results [3], [4], [11]. In general, different
concepts of coupling play a role in practice to modularize
systems [12] and the coupling developers perceive is not
limited to structural dependencies [13].

It is appropriate to derive a modularization from scratch for
legacy systems without any useful modularization. However, in
most cases, there already exists a meaningful modularization
of a software system, which is often not perfect and might
require updates. Miiller et al. [14] recommend not to fully
automate the process and Glorie et al. [15] and Rama [16]
warn not to ignore the already existing structures. There
are some approaches that address the issues by only partly
changing the system, for instance, by extracting only specific
components [17], [18], [19] or using the current modulariza-
tion as a starting point for optimization [20].

Visualization could help provide an explorable comparison
between the current modularization of a system and any
clustering result. For instance, two juxtaposed visualizations
connected by links show similarities between the modular-
ization and the clustering [21], [22]. Alternative approaches

for encoding similarities use matrices [23] or nesting the
clustering result into the representation of the current modular-
ization [24]. Other related approaches visualize the evolution
of a modularization as a timeline of juxtaposed and connected
hierarchies [25]. Vehlow et al. [26] extend this approach to
showing dependency matrices in each timestep and comparing
different dynamic hierarchy sequences.

There exist more work on visual hierarchy comparison in
other domains, some of approaches cover the comparison of
more than two hierarchies applying coloring for similarity
encoding [27]. In context of phylogenetic trees, Bremm et
al. [28] juxtapose node-link representations of hierarchies.
Different measures show global and local similarities. When
selecting a reference hierarchy, the approach is similar to
ours. However, they focus on comparing more, but smaller
hierarchies. For fewer but larger hierarchies, Graham and
Kennedy [29] work with juxtaposed icicle-plot-like represen-
tations, but use a different coloring approach and no refer-
ence hierarchy. TreeDyn [30] provides, among other views, a
juxtaposed representation for biological trees, but focusing on
annotation features. For an extensive survey of visual hierarchy
comparison, we refer to Graham and Kennedy [27].

Our approach targets at the comparison of the current
modularization to a set of hierarchical clustering results. It
is different from previous work because it is the first multi-
hierarchy comparison approach tailored for a software cluster-
ing scenario. It does not combine multiple data sources into
one clustering result, but presents the results of alternative
clustering runs. The visualization extends state-of-the-art vi-
sual hierarchy comparison approaches for this scenario.



III. VISUAL COMPARISON APPROACH

As shown in Figure 1, we visualize different modulariza-
tions of software systems and offer visual cues and interactions
to compare them. We assume an object-oriented programming
style and use classes and interfaces as atomic pieces of soft-
ware. Please note that, in the following, the term classes refers
to both classes and interfaces for simplification. These atomic
entities are organized in a hierarchical package structure. This
current package structure of the system is used as reference
modularization for comparison to generated modularizations.
Because of this asymmetry in roles—current, or primary,
hierarchy and generated secondary hierarchies—, we use an
asymmetric visualization approach. Small multiples [31] of
icicle plots [1] represent the hierarchies in a space-efficient
visualization. Similarities between clusters and packages are
color-coded in the nodes (rectangular blocks) of these plots.
Interactions allow users to explore the dataset. This section
introduces the general approach together with important design
decisions in detail; a tutorial for users is available online.2

A. Small Multiples of Icicle Plots

Icicle plots [1] are a space-efficient hierarchy visualization
approach because neither links (like in traditional node-link
representations) nor indentation (like in indented hierarchy
diagrams often used in file browsers) require additional space.
Nodes at lower levels are larger and thus have room to
display their label, whereas leaf nodes are compressed to a
thin slice and do not provide enough space for labels. To
clearly distinguish class nodes from package and cluster nodes,
we draw class nodes smaller than inner nodes and use a
yellow background color for them. The topmost levels of the
package hierarchy are usually identical for all classes and
get aggregated into a single, thin root node. Horizontally, the
rectangles in the icicle plot are separated by a small margin.
Vertically, this approach would cause visual clutter because
some of the nodes are very small in height. Instead, each node
has a small color gradient at the bottom that distinguishes it
from the adjacent node.

The visualization compares several secondary hierarchies
to one primary hierarchy. We use a small multiples visual-
ization [31] to give an overview of multiple hierarchies at a
time. While is possible to support the comparison by links
connecting the hierarchies [21], [22], this does not scale to a
comparison of multiple hierarchies: We could line up the icicle
plots and draw links between adjacent hierarchies, but since all
hierarchies are to be compared to the package hierarchy, this
would not meet our requirements. Therefore, we decided to
display the icicle plots side-by-side without links. We assign
a color to each clustered modularization for identification and
apply it to the surrounding borderline; we use the same color
to group related clustering results.

B. Ordering of Nodes

The package structure as primary hierarchy is ordered
alphabetically to resemble the view in an IDE or file explorer
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Fig. 2. Illustration of how similarity values are aggregated according to
Equation la (left) and Equation 1b (right).

and to simplify finding a specific class or package. Since
inner nodes of the secondary, clustered hierarchies only have
artificial labels, their order is not predefined. We sort the nodes
of secondary hierarchies in similar orders as in the primary
hierarchy. This simplifies finding the same class in multiple
icicle plots. A second advantage is that a continuous list of
nodes in one hierarchy is likely to be continuous in other
hierarchies as well.

To achieve a consistent ordering, we use a sorting algorithm
similar to the one introduced by Holten and van Wijk [21],
which is based on the work of Sugiyama et al. [32]. They
also use icicle plots, but connect corresponding nodes with
lines; the algorithm sorts both hierarchies to reduce edge
crossings. Our problem is similar: while our nodes are not
visually connected, reduction in edge crossings also results in
reduction of distance between connected nodes.

Since the order of the primary hierarchy is fixed, we can
use a simplified sort algorithm that just requires one traversal.
The general idea is to order nodes by the position of the
barycenter of their corresponding nodes in the other hierarchy.
Inner nodes are represented by the set of contained leaf nodes.
For instance, if the classes in a cluster are on average near the
bottom of the primary hierarchy, this cluster has a tendency
to be moved to a low position. The algorithm recursively
traverses the hierarchy and reorders the hierarchy.

C. Similarity Encoding

To simplify the comparison of hierarchies further, nodes
of the secondary hierarchies are color-coded to show their
similarity to nodes of the primary hierarchy. The gray value of
a node represents the similarity of it to the best-fitting package
in the primary hierarchy. Vice versa, to find package nodes
that have a cluster with high similarity, the same gray value
is used for package nodes. Instead of selecting the best node
from only one secondary hierarchy, the most similar node of
all secondary hierarchies is used. Figure 2 illustrates how the
similarity values of nodes are calculated.

Formally, the package set P as well as each of the clus-
tered modularizations M; is a family of sets of classes C,
defined as P = {p1,...,pn} and M; = {m;1,...,m;;,}
M = UleMi). Each package p or clustered module m
is a set of classes from C; the hierarchical structure of
packages and clustered modules is only implicitly encoded
by subset relations. Further, sim(p,m) denotes a similarity
metric between a package p and a clustered module m. To



assign each package and clustered module a similarity value
used for coloring, we define:

sim(p) = max sim(p, m) (1a)
sim(m) = maxsim(p, m) (1b)
peEP

This similarity value is mapped to a gray scale from light
gray (low similarity) to black (high similarity). White is not
part of the color scale because otherwise the nodes would
not be visible against the background of the visualization. We
use the Jaccard coefficient as a default similarity metric often
applied in hierarchy comparison [22], [23], [24], [28], [33].
The Jaccard coefficient is the number of classes that are leaves
of both nodes divided by the number of classes that are leaves
of either node:
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Hence, for calculating the similarity metric of two nodes, we
take only their leaf nodes into account. Clusters and packages
that contain the same classes are considered maximally similar,
independent of how those classes are substructured. Since the
Jaccard coefficient is a ratio between 0 and 1, we list all
similarities as percentage values in the user interface.

The background color shows how similar a node is to other
nodes, but we also want to determine which node is the most
similar one. Nodes are decorated with colored vertical bars.
The color of this bar in the primary hierarchy corresponds
to the clustering that contains the most similar cluster. For
every package, the most similar cluster is also highlighted
with the same bar in the respective secondary hierarchy. Once
the user is familiar with the color coding, this color bar
provides a quick way to identify which coupling concepts
are dominant in the package structure (e.g., orange colored
structural dependencies in Figure 1).

In inner nodes of the secondary hierarchies, pie charts
further indicate how the nodes relate to the most similar
package. They are separated vertically: the top part shows how
many classes in the cluster are not contained in the package,
and are thus additions; the bottom half relates to the number
of classes missing in the cluster, called removals. Both values
are presented relative to the total number of classes in the
package and in the cluster. The background color of the pie
chart is black and the filled parts are colored in white. Thus, on
clusters with 100% similarity, the pie chart becomes invisible.
This is an intentional effect because there are neither additions
nor removals that need to be noted.

When the mouse hovers a node, a tooltip is shown, which
contains the full label of a class, package, or cluster (Figure 1).
For inner nodes, the label of the most similar cluster and its
clustering is given, along with the similarity value. Also, a
larger version of the pie chart is displayed for all clustered
modules. This is especially important for nodes that are too
small for containing a pie chart.
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Fig. 3. Adjacency matrix visualization showing the evolutionary coupling
graph EC.Conf and the related clustering result for project PMD.

D. Coupling Matrix

While the icicle plots visualize the clustering results, they
are already an abstraction and might hide important details. For
deeper inspection, it is helpful to see the raw coupling informa-
tion that was used to create the clustered hierarchy. Therefore,
the visualization provides an adjacency matrix representation
for all icicle plots that shows the underlying coupling graph.
Matrices can be toggled via a button below the icicle plots
and are shown directly beside them (Figure 3). The icicle plot
works as a legend for the matrix: rows of the matrix align
with the leaf nodes of the icicle plots; columns have the same
order. Such hierarchical adjacency matrix representations, also
called dependency structure matrices, are a common way to
visualize hierarchically structured coupling graphs [23], [34],
[35]. We decided against adding links to connect the nodes
because such an approach does not visually scale well [36].
A scalable alternative would have been to apply parallel edge
splatting [37], which makes the graph artificially bipartite and
uses straight (splatted) links. This approach, however, is likely
more unfamiliar to software engineers.

E. Interactive Exploration

One basic but powerful feature for small multiples visualiza-
tion is brushing and linking (i.e., connecting the different vi-
sualizations by linked selections of visual elements). It allows
the user to trace one item across all plots. Our visualization
employs brushing and linking on class level, i.e., it is possible
to select a set of classes that will then be highlighted across
all icicle plots.

We use modifier keys to provide a flexible selection mech-
anism without requiring different input modes. The user can



simply click on any node to select this node. If the clicked
node is an inner node, all leaf nodes are selected. Any former
selections are discarded. If the Ctrl key is pressed while
clicking, the new selection is added to the previous one. This
allows us to select multiple disjoint nodes. It is also possible
to remove nodes from the selection by Ctrl-click and also
works for inner nodes if all their leaf nodes are selected. This
mechanism is similar to how file explorers and other widely
known applications work, and therefore familiar to the user.

Besides the main selection, nodes can also be highlighted
by just hovering them with the mouse. This will highlight the
leaves of the hovered nodes as well as the corresponding leaf
nodes in the other hierarchies with a different color. We have
chosen a blue color for the main selection, as it is known
from many existing applications. The hover selection will just
darken nodes—if they are contained in the main selection, the
color is darker blue, otherwise darker yellow. This allows us
to combine both selections.

Main selection does not only highlight nodes but also
provides additional information in the sidebar. At the top, the
selected classes are listed. Clicking on a class will show the
source code of the class. Below, there is a list of clusters
and packages that are most similar to the selection. Similarity
is measured as described in Section III-C. Of each clustering,
there is at least one cluster shown. If there are multiple clusters
with similarity values above a certain threshold (33% in our
case), those second- and third-best clusters are shown directly
below the best cluster in their clustering. Thus, the clusters
are grouped by their origin.

The clusters are presented in the form of a table. The
leftmost column is a visual indicator for the similarity. The
percentage is shown inside a rectangle that is filled according
to the similarity value. In the second and third column, this
value is explained in terms of Equation 2, i.e., the sizes of
the intersection and union of the cluster and the selection are
given. Next, the cluster label is displayed and prefixed by a
colored clustering identifier. In case of packages, the package
name is shown. The last column contains the number of classes
of each cluster. Hovering over an item in the list of similar
clusters highlights the contained classes in the hover selection
mode. This allows users to quickly compare the selection to
the cluster. The icicle plot of the hovered clustering is also
highlighted with a shadow. Clicking a cluster selects it using
the main selection mode.

To go back to an earlier selection, an undo/redo feature is
provided through the backward and forward buttons of the
browser. The selection is encoded in the URL to allow users
to bookmark or share a particular selection.

Users choose which clusterings are shown in an additional
pane that can be opened in the sidebar. It provides a short
explanation for each clustering result. Once selected, the icicle
plots can be rearranged via drag and drop.

IV. SOFTWARE MODULARIZATION

Through the use of small multiples, color coding, and
interactive selections, our approach supports the comparison

TABLE I
CONSIDERED CONCEPTS OF CODE COUPLING [12].

SD  Structural dependencies based on inheritance of classes (Inh),
aggregation of classes through fields (Agg), or other usage of classes,
e.g., method calls, usage as local parameter, etc. (Use).

FO  Fan out coupling, i.e., classes are similar if they share similar
dependencies to external libraries (InhE, AggE, UseE) or to project
internal classes (Inhl, Aggl, Usel).

EC  Evolutionary coupling constructed from co-changes of classes based
on support (Sup) and confidence (Conf) metrics [11].

CO  Code ownership connecting files that have the similar set of authors
based on binary author assignments (Bin) or proportional (Prop).

CC  Code clone coupling indicating coverage of the same type I (I) and type
11 (Il) clones.

SS  Semantic similarity of the code retrieved from shared vocabulary
applying a term frequency—inverse document frequency measure
(Tfidf) and latent semantic indexing (LSI).

of multiple clustering results to a package structure. While
different clustered modularizations might be produced by
different clustering algorithms, we want to focus here on
varying data sources of clustering. For all modularizations,
we use the same algorithm, but vary the coupling graph that
is used as a basis for clustering.

A. Code Coupling and Modularization

Each of the coupling graphs represents a different mod-
ularization criterion that might explain parts of the current
modularization or could suggest improvements in the modu-
larization. Beck and Diehl [12] survey different definitions of
code coupling used in literature, such as structural dependen-
cies (SD), fan-out coupling (FO), evolutionary coupling (EC),
code ownership coupling (CO), code clone coupling (CC),
and semantic similarity (SS). Each of these general coupling
concepts is subdivided into different instances representing
specific coupling metrics. Table I gives an overview of these
coupling concepts and provides short explanations; for more
information, we refer to the original publication [12]. We apply
these definitions in the following for obtaining graph structures
that we use for clustering.

These concepts of coupling are connected to different modu-
larization criteria advocated in literature [12]. For instance, the
well-known concept of low coupling and high cohesion [38] is
related to structural dependencies (SD): applying the principle
should lead to dense clusters of structurally connected classes
within packages that have only few connections to other pack-
ages. In contrast, information hiding [39] is conjectured to be
connected to fan-out coupling (FO) and evolutionary coupling
(EC). In this way, insights obtained with our visualization
approach hint at higher-level design guidelines that might have
been applied by the developers.

B. Modularization Patterns

Our visualization approach now supports us to identify
patterns in the visualization that indicate criteria used for
modularizing a specific part of the system. In case a package
is not (or only partly) matched by any of the modules in
the different clustering results, the visualization provides hints



how to remodularize the system. While color-coded similari-
ties and pie diagrams are first indicators, usually an interactive
exploration helps to fully understand a specific pattern.

In particular, we define a modularization pattern as a
specific type of similarity between a package and one of the
clustered modules observable in our visualization. We discern
three main patterns that are further divided into subpatterns.
We came up with these patterns following an iterative ap-
proach, discussing the patterns among the authors and applying
them to two pilot examples, PMD and JHotDraw, that we
introduce in further detail in Section V-B. After identifying the
patterns, we checked that they are applicable to other projects
by expanding the analysis to 14 other projects (Section V-C).

P1: Match—Dark gray or black boxes in the package
structure identify packages that are well-matched by one of
the clusters. The colored bar hints at the origin of the cluster,
while the specific cluster can be retrieved by hovering over or
selecting the package. In general, a match is a strong indicator
that a certain information was used to modularize the respec-
tive package. In some cases, the match between a package and
a cluster is perfect: a 100% agreement encoded in black (P1.1:
Perfect Match). In other cases, there is still a small difference
between the package and the best matching cluster, which
might be that the cluster contains some additional elements
(P1.2: Addition Match) or fewer (P1.3: Removal Match).
This information can be easily obtained from the pie chart of
the cluster. To explore these added or removed elements one-
by-one, for addition matches, the user first selects the cluster
and then Crtri-clicks the package (vice versa, for removal
matches). Please note that addition and removal matches can
occur for the same package—cluster match. In addition, the
clustering might suggest a subdivision (P1.4: Subdivision
Match): the matched cluster is further divided into fine-
grained clusters in a second level colored in gray. This suggest
a finer or alternative substructure of the current package, which
might be considered for remodularization.

P2: Partial Match—If only an incomplete but significant
part of a package is matched by any of the clustered modules,
the package has a medium gray background. Such a partial
match can be caused by two situations: First, if the matched
classes are a subset of the matched cluster, this indicates that
other classes have been detected as related by the clustering
result. If this clustered module is not yet well-matched by
any of the packages, it might make sense to merge the
classes of the partially matched cluster into a larger package
as part of a remodularization (P2.1: Suggested Merge). In
contrast, if the cluster even better matches another package
(typically, the parent package of the partially matched one),
the merge is already reflected in the package structure, hence
is confirmatory (P2.2: Confirmatory Merge). Second, as
a complement, the partial match might suggest splitting a
package when there exist several partly matched, independent
clusters (P2.3: Suggested Split). If this split is already realized
in the package structure (here, by well-matched subpackages),
it is confirmatory (P2.4: Confirmatory Split). Blends of
merges and splits are possible, even likely, whenever the

partially matched clusters contains neither a perfect subset nor
superset of elements. Again, interactive selection and details-
on-demand help users discern these subpatterns.

P3: Miss—A light gray package indicates a low agreement
to any clustering result—none of the clustering results explains
why the package is constructed like this. There might exist a
criterion, but extra information is required to identify it.

C. PFatterns in Application

As mentioned above, certain subpatterns can appear together
for a package. Also, some packages cannot be unambiguously
assigned; for instance, there might be corner cases between
a match and a partial match. The patterns are only intended
to provide a vocabulary and describe idealized scenarios. We
also do not define specific thresholds to discern between the
patterns because these numbers might be project-specific and
could depend on the context the approach is used in. To clearly
focus on the package structure as our primary hierarchy, the
degree of similarity of the package—not the cluster—discerns
the type of pattern. But if the user wants to analyze a certain
clustering, the proposed patterns are also applicable in reverse
by starting at the similarity value assigned to a specific cluster
and then comparing it to the matched packages of this cluster.
In practical application, it is not only important which pattern
is assigned to a package, but of course, also to which of the
clustering result it is most similar. If the developers agreed to
follow a certain guideline to modularize the packages (e.g.,
low coupling and high cohesion [38]), matches to some of
the clusterings are intended (e.g., structural dependencies).
When packages do not match any intended clustering result,
the developers might want to refactor them according to the
suggested clusterings.

V. RESULTS

We demonstrate the usefulness and practical relevance of the
presented approach by applying it to open source Java projects.
In particular, we use the dataset collected and described in
previous work [12] to investigate the congruence of code
coupling and modularity. It comprises 16 small to mid-size
projects (78—679 classes, 6-83 packages) of different kind.
Each project is modeled as a set of 17 coupling graphs on class
level, covering the different concepts of coupling described in
Table 1. To derive different modularizations, we fed each of the
coupling graphs into a hierarchical graph clustering algorithm.
In particular, we used infohiermap [40], a state-of-the-art clus-
tering approach that automatically computes a meaningfully
coarse hierarchical structure by detecting densely connected
groups (i.e., modules) of graph nodes (i.e., classes).

In the following, we present the analysis of this data using
our visualization approach. First, we demonstrate that a com-
parison of multiple hierarchies is necessary by showing that
indeed different clustering results provide meaningful matches
to the current package structure. Second, we investigate two
systems in detail and give qualitative examples of meaningful
insights gained. Finally, we scale the analysis to all 16 projects
and show a quantitative overview of detected patterns.



TABLE 11
PERCENTAGE OF BEST MATCHING PACKAGES OF SOFTWARE PROJECTS REGARDING THE SPECIFIC CLUSTERING RESULTS; GRAY HIGHLIGHTS HIGH
VALUES; PERCENTAGE VALUES MIGHT SUM UP TO MORE THAN 100% PER PROJECT BECAUSE MULTIPLE BEST MATCHING CLUSTERS ARE POSSIBLE.

SD FO EC CO CC SS

#pkg Inh Agg Use InhE  AggE UseE Inhl Aggl Usel Sup Conf Bin Prop | 1l Tfidf  LSI
Checkstyle 20 20% 5% 20% - 40% 40% 10% 5%
Cobertura 15 183% 33% 27% - - 7% - 7% - 20% - -
CruiseControl 23 17% 4% 26% 4% 22% - 4% 17%  22% - 4%
iText 22 23% 14% 32% 5% 5% - 14% 14% 18% 9% - -
JabRef 33 24% 21% 39% 3% - 3% 6% - 24%  24% 3% - 3%
JEdit 26 15% - 38% - 4% 4% 4% 12% 15% 23% - 4% 4%
JFreeChart 35 20% - 9% 6% - - - - 69% 69% 3% - -
JFtp 6 - 17% - 17% - - 17% 17% 33% - 17%
JHotDraw 65 29% 5% 17% 3% - 5% 6% 1% 6% 15% 25% - 2%
JUnit 23 9% 9% 26% - 4% 22% 4% 4% 17%  22% 4% -
LWJGL 23 13% 9% 39% 4% - - - - - 26% 30% 13% -
PMD 42 33% 10% 24% 2% 2% 5% - 17%  14% 10% 2%
Stripes 18 28% 6% 39% 6% - - 1% 6% 11% - 6%
SweetHome3D 7 57% - 14% - - - - 14%  29% - - - -
TvBrowser 58 22% 14% 24% 5% 2% - 3% 2% 14% 24% 2% 2% 2% 2%
Wicket 83 53% 1% 8% 1% 1% 1% 7% 4% 18% 24% 2% - - -
avg 24% 9% 24% 4% 1% 0% 5% 2% 5% 20% 25% - - 6% 1% 2% 1%

A. Package—Cluster Similarities

Our approach is based on the assumption that comparing
the modularization of a software system to only one clustering
result provides only a limited view. We argue that, as supported
by our visualization, only a comparison to multiple clustering
results provides a clear picture of criteria used for constructing
the package structure. We first check this assumption and pro-
vide evidence that several clustering results give meaningful
insights. To this end, we identify the best matching cluster
of every package according to Equation la. We perform this
analysis on all 16 projects. Table II summarizes the results
by listing the percentage of best matches for each of the 17
concepts of coupling (i.e., a value of 20% means that a fifth
of the packages of the respective project is best matched by
the respective clustering result).

The results indicate that not only one type of clustering
receives all best matches, but the matches are spread across
several clustering results. On average, clusters based on struc-
tural dependencies have often a high agreement with the
package structure (SD.Inh: 24%, SD.Use: 24%) as well as
those based on evolutionary coupling (EC.Sup: 20%, EC.Conf:
25%). Together, they already cover most of the matches. The
remaining part is spread across all other clustering results,
except for CO.Bin, CO.Prop, and CC.II, which do not contain
any best matches. Hence, indeed this confirms our assump-
tion that, for identifying modularization patterns, one should
consider multiple hierarchies. These results also align with
previous results that the congruence of coupling information
and the package structure of software systems is not dominated
by a single type of coupling [12].

As a further result, showing all 17 clusterings in the
visualization is not necessary because some have only little
contribution on explaining the package structure. In particular,
we rule out the three metrics that do not show any best

matches (CO.Bin, CO.Prop, CC.II). Furthermore, we exclude
the external fan-out couplings (FO.InhE, FO.AggE, FO.UseE),
but include the internal ones (FO.Inhl, FO.Aggl, FO.Usel),
which slightly perform better. Similarly, we exclude SS.LSI
and keep SS.Tfidf for semantic similarities. For the following
analysis and in all figures of this paper, we hence only use the
following set: SD.Inh, SD.Agg, SD.Use, FO.Inhl, FO.Aggl,
FO.Usel, EC.Sup, EC.Conf, CC.I, and SS.Tfidf.

B. Pilot Examples

As pilot application examples, we choose PMD, a source
code analysis tool, and JHotDraw, a charting library. They
have considerable size (42 and 65 packages) and represent
two different kinds of applications. In the following, we
use shortened package names, leaving out the package stems
net.sourceforge.pmd and org. jhotdraw. Figures 1
and 4 show the discussed datasets for PMD and JHotDraw;
these images provide previews, but we refer to the interactive
version of the tool to follow the interactive exploration process.
In particular, brushing and linking as well as selections are
required for making some of the discussed observations.

PMD—An example of a perfect match (P1.1) is Package
dcd (dead code detector), which is equivalent to clusters
from evolution coupling (Cluster A.K of EC.Sup and Clus-
ter A.C of EC.Conf). Either the package was created quite
independently from the other code or it has been moved from
elsewhere to the current location—the matrix representation
of EC.Conf (Figure 3) suggests the second scenario because
the cluster produces a dense block of connections on the
diagonal and a gradual development usually leads to sparser
structures. Moreover, Package dcd is also well-matched to
Cluster E.A of SD.Use (83%), indicating that it is as well quite
cohesive regarding its usage dependencies, which can be con-
firmed in the respective matrix. Other perfect matches (P1.1)



are Packages parsers, renderers, and util.viewer.
While the latter is again matched by evolutionary coupling
(EC.Sup/EC.Conf), the first two have an equivalent cluster
in direct inheritance dependencies (SD.Inh)—the criterion to
design these packages has been dependencies in the inheri-
tance structure of the contained classes. In addition to those,
many other packages are also well-matched: For example,
Package cpd (copy/paste detector) is very similar to Cluster
A.C of EC.Sup and Cluster A.D of EC.Conf (88%) as well
as to Cluster D of SD.Use (85%). While the first two are
rather addition matches (P1.2), the last one is an example
of a removal match (P1.3); further, the match to SD.Use
can be classified as a subdivision match (P1.4) because the
clustering suggest a finer substructure that is not yet reflected
by the package structure. Developers could use these insights
to slightly adapt or refine Package cpd. There are only few
examples of clear partial matches in PMD—most packages
are either matches or misses, which is indicated by the
high-contrast, light-dark package structure. One of the few
partial matches is Package util, which we consider as a
confirmatory split (P2.4). A 37% agreement with evolutionary
coupling (EC.Sup/EC.Conf) shows a split into one bigger
cluster and a few smaller ones. In particular, the bigger cluster
is already realized in Package util.viewer, which has
been identified as a perfect match already (see above). Package
jsp.ast, is partially matched by Cluster C from SD.Use,
can be considered as a confirmatory merge (P2.2) because it
suggest to add elements already contained in parent Package
jsp. Examples of misses (P3) are Packages rules.design,
rules.strings, and symboltable.

JHotDraw—In contrast to PMD, medium and light gray
dominate the package structure, indicating less matches, but
more partial matches and misses. The only bigger package
classified as a match is Package draw.tool, by trend,
an addition match (P1.2) to direct inheritance dependencies
(SD.Inh). The biggest package among the partial matches
is Package draw, having a 59% agreement to Cluster A of
indirect usage dependencies (FO.Usel). The matrix of FO.Usel
confirms a clearly cohesive coupling of the classes contained in
Cluster A. We classify this pattern as a suggested merge (P2.1)
because the cluster proposes a union with Package geom and
parts of Package samples. While it is reasonable to merge
(or add a common parent package) for Packages draw and
geom, it does not make sense to move elements of Package
samples because it contains sample code that illustrates
the usage of the framework but was intentionally separated
from the main framework code. None of the clusterings is
able to match this—Package samples is classified as a miss
(P3). Package app with an agreement of 53% to SD.Use and
FO.Usel is a suggested split (P2.3) because both clusterings
indicate a subdivision of the package that is not reflected yet.
At the same time the clusterings suggest a merge, but again to
parts of Package samples. In general, leaving out samples
from the clustering would improve the matches between the
package structure and the clusterings. As a second bigger
package, Package gui needs to also be classified as a miss
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Fig. 4. Visualization of project JHotDraw.

(P3). Like visible in the matrix, the coupling information for
its elements is too sparse to produce meaningful clusters.

C. Identified Modularization Patterns

After analyzing the pilot examples and defining modu-
larization patterns based on these examples, we expanded
our analysis to all 16 software projects contained in the
studied dataset [12]. For every project, we investigated its
main packages that we define as packages containing at least
10 classes and being split at the first non-trivial level of the
package structure (or, if the first level is dominated by a
single package, the second level of the dominating package).
In total, the 16 projects contain 107 main packages. For each
of these packages, we decided if it is either a match, partial
match, or split. We further discerned subpatterns according to
Section IV-B and connect each to one of the clustering results.
In some cases, we needed to assign multiple subpatterns
because either (a) subpatterns might occur together for the
same package—cluster match or (b) multiple clusters matched
to a very similar extent. Table III reports our findings.

Considering the main patterns, 25% of the packages (27 of
107) are classified as matches. For these, it is quite clear to
which clustering they relate to, and hence, what was a criterion
to construct them. For matches, we discerned 1.8 subpatterns
per package, mostly perfect matches (P1.1), addition matches



TABLE III
NUMBER OF IDENTIFIED PATTERNS OF ALL MAIN PACKAGES AMONG ALL
16 PROJECTS DISCERNED BY ORIGIN OF THE MATCHED CLUSTERS.

SD FO EC CC SS
Inh Agg Use Inhl Aggl Usel Sup Conf | Tfidf

P1 27

P1.1 3 1 1 - 3 3

P12 4 - 2 1 5 5

P1.3 3 1 3 1 6 6

P1.4 - - 1 -

P2 58

P2.1 6 2 8 1 1 8 © 11 1
P2.2

P23 [12 4 [12 4 1 9 12 [14 1
P24 3 - 4 - - - - - -
P3 22

(P1.2), and removal matches (P1.3), but rarely subdivision
matches (P1.4). The matches are frequently related to some of
the structural dependencies and evolutionary coupling (SD.Inh,
SD.Use, EC.Sup, and EC.Conf). Hence, these metrics seem to
play an important role for designing packages.

Partial matches form the biggest group of patterns, with
54% of the packages (58 of 107). In particular, suggested
merges (P2.1) and suggested splits (P2.3) occur frequently. We
observed the two patterns often together—a cluster suggests to
merge other classes into the package and would remove others.
This co-occurrence is also reflected in the higher number of 2.1
subpatterns per package. In isolation, suggested splits are more
frequent than suggested merges. This bias might be influenced
by our focus on larger packages—a merge would require even
larger clusters. We also identified a few confirmatory splits
(P2.4), but no confirmatory merges. Similarly, this imbalance
is likely an artifact of our data acquisition: confirmatory
merges are only possible on the second level of the pack-
age structure and below. Regarding the clusterings, again
SD.Inh, SD.Use, EC.Sup, and EC.Conf represent the majority
of matches, but in addition, SD.Agg, FO.Inhl, and FO.Usel
have an influence. Confirmatory matches only appear for
SD.Inh and SD.Use. According to our experience, structural
dependencies (SD) usually produce fine-grained clusterings in
several layers, which makes confirmatory patterns more likely.

Misses only appear in 21% of the packages (22 of 107). Our
data and visualization does not provide enough information to
explain the criteria for these packages.

We also recorded the durations that the author who per-
formed the analysis required to classify the packages. We
exclude PMD and JHotDraw from this analysis because, as
our pilot examples, we studied them in more detail, which
took longer. For each of the remaining 14 projects, it took 1—
9 min to classify the 2—12 main packages. A total of 59 min
results in about 4 min per project on average and about 40 s
for one of the 91 main packages.

VI. DISCUSSION AND LIMITATIONS

Motivating our approach in Section I, we presented two use
cases: Use Case I describes software developers extending or
restructuring a software systems and Use Case II outlines a
research scenario where software engineering scientists study
modularization patterns. The presented results (Section V)
now provide examples of both scenarios. First, analyzing
an individual project and studying modularization patterns
of central packages is demonstrated in the pilot examples
(Section V-B) and matches Use Case I. Second, broadening the
analysis to a larger set of projects studying common patterns as
done in Section V-C is already a specific instance of Use Case
II. Hence, the approach is not only a tool that can be leveraged
in practical software development, but equally in research to
explore modularization criteria and generate hypotheses for
further investigation.

Whereas these applications reflect realistic examples, their
ability to provide evidence for the usefulness of our approach
is limited: First, the interactive visualization approach was
only used by the authors themselves. Hence, the results only
reflect what trained users might be able to find, but it remains
unknown how self-explaining and easy to use the tool is
for untrained users. Furthermore, we did not contrast the
approach to another technique because it is unclear what is an
appropriate baseline for this scenario. It is even difficult to find
a visualization tool that could represent the same data—some
other hierarchy comparison approaches do (cf. Section II),
but they are not tailored for a software engineering scenario.
Software engineering tools, in contrast, lack the ability to
provide an overview on and compare multiple clustering
results. Finally, the approach has only been tested for small to
medium size open source Java systems.

VII. CONCLUSIONS AND FUTURE WORK

We presented a novel approach for comparing a modular-
ization of a software system to multiple clustering results. By
juxtaposing icicle plots and encoding similarities in colors
as well as making them interactively explorable, users are
enabled to identify modularization patterns. These patterns
might explain the criteria that were used to construct a module
or hint at weaknesses in the modularization. By providing
realistic examples, we show that the patterns could lead to
important insights for extending and remodularizing a software
system as well as for studying modularization in general.

As part of future work, we consider extending our visual
comparison approach towards interactive editing of a hier-
archical software modularization. This has been investigated
in context of remodularizing software systems for individual
hierarchies [41], pairs of hierarchies [22], or extracting specific
components [18], but not for the comparison of the current
modularization to a set of clustering results. Multiple automat-
ically generated modularizations could much better support a
software developer to find appropriate improvements and to
understand the effects of a remodularization. Also, we want
to test our approach with untrained users to find strengths and
weaknesses in the usability and applicability of our approach.



ACKNOWLEDGMENT

Fabian Beck is indebted to the Baden-Wiirttemberg Stiftung
for the financial support of this research project within the
Postdoctoral Fellowship for Leading Early Career Researchers.

[1]
[2]

[3]

[4]

[5]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

J. Kruskal and J. Landwehr, “Icicle Plots: Better displays for hierarchical
clustering,” The American Statistican, vol. 37, no. 2, 1983.

S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch:
A clustering tool for the recovery and maintenance of software system
structures,” in Proceedings of the IEEE International Conference on
Software Maintenance. 1EEE Computer Society, 1999, pp. 50-59.

P. Andritsos and V. Tzerpos, “Information-theoretic software clustering,”
IEEE Transactions on Software Engineering, vol. 31, no. 2, pp. 150-165,
2005.

A. Wierda, E. Dortmans, and L. L. Somers, “Using version information
in architectural clustering — a case study,” in Proceedings of the Con-
ference on Software Maintenance and Reengineering. 1EEE Computer
Society, 2006, pp. 214-228.

O. Magbool and H. Babri, “Hierarchical clustering for software archi-
tecture recovery,” IEEE Transactions on Software Engineering, vol. 33,
no. 11, pp. 759-780, 2007.

B. S. Mitchell and S. Mancoridis, “On the evaluation of the Bunch
search-based software modularization algorithm,” Soft Computing,
vol. 12, no. 1, pp. 77-93, 2007.

A. Kuhn, S. Ducasse, and T. Girba, “Enriching reverse engineering with
semantic clustering,” in Proceedings of the 12th Working Conference on
Reverse Engineering. 1EEE Computer Society, 2005, pp. 133-142.

L. Voinea and A. Telea, “CVSgrab: Mining the history of large software
projects,” in Proceedings of the Joint Eurographics - IEEE VGTC
Symposium on Visualization. Eurographics Association, 2006, pp. 187—
194.

A. Vanya, L. Hofland, S. Klusener, P. Van De Laar, and H. Van Vliet,
“Assessing software archives with evolutionary clusters,” in Proceedings
of the 16th IEEE International Conference on Program Comprehension.
IEEE Computer Society, 2008, pp. 192-201.

L. L. Silva, M. T. Valente, M. de A Maia, and N. Anquetil, “Developers’
perception of co-change patterns: An empirical study,” in Proceedings
of the 2015 IEEE International Conference on Software Maintenance
and Evolution. 1EEE, 2015, pp. 21-30.

F. Beck and S. Diehl, “On the impact of software evolution on software
clustering,” Empirical Software Engineering, vol. 18, no. 5, pp. 970—
1004, 2013.

——, “On the congruence of modularity and code coupling,” in Pro-
ceedings of the 19th ACM SIGSOFT Symposium on the Foundations
of Software Engineering and 13th European Software Engineering
Conference. ACM, 2011, pp. 354-364.

G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “An empirical study on the developers’ perception of
software coupling,” in Proceedings of the 35th ACM/IEEE International
Conference on Software Engineering. 1EEE, 2013, pp. 692-701.

H. A. Miiller, M. A. Orgun, S. R. Tilley, and J. S. Uhl, “A reverse
engineering approach to subsystem structure identification,” Journal of
Software Maintenance: Research and Practice, vol. 5, no. 4, pp. 181-
204, 1993.

M. Glorie, A. Zaidman, A. van Deursen, and L. Hofland, “Splitting
a large software repository for easing future software evolution—an
industrial experience report,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 21, no. 2, pp. 113-141, 2009.
G. M. Rama, “A desiderata for refactoring-based software modularity
improvement,” in Proceedings of the 3rd India Software Engineering
Conference. ACM, 2010, pp. 93-102.

H. Washizaki and Y. Fukazawa, “A technique for automatic component
extraction from object-oriented programs by refactoring,” Science of
Computer Programming, vol. 56, no. 1-2, pp. 99-116, 2005.

A. Marx, F. Beck, and S. Diehl, “Computer-aided extraction of software
components,” in Proceedings of the 17th Working Conference on Reverse
Engineering. 1EEE, 2010, pp. 183-192.

C. McMillan, N. Hariri, D. Poshyvanyk, J. C. Huang, and B. Mobasher,
“Recommending source code for use in rapid software prototypes,” in
Proceedings of the 2012 International Conference on Software Engi-
neering. 1EEE, 2012, pp. 848-858.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

M. Hall, N. Walkinshaw, and P. McMinn, “Supervised software modu-
larisation,” in Proceedings of the International Conference on Software
Maintenance. 1EEE, 2012, pp. 472-481.

D. Holten and J. J. van Wijk, “Visual comparison of hierarchically
organized data,” Computer Graphics Forum, vol. 27, no. 3, pp. 759-
766, 2008.

R. Lutz, D. Rausch, F. Beck, and S. Diehl, “Get your directories right:
From hierarchy visualization to hierarchy manipulation,” in Proceedings
of the 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing. 1EEE, 2014, pp. 25-32.

F. Beck and S. Diehl, “Visual comparison of software architectures,”
Information Visualization, vol. 12, no. 2, pp. 178-199, 2013.

F. Beck, F-J. Wiszniewsky, M. Burch, S. Diehl, and D. Weiskopf,
“Asymmetric visual hierarchy comparison with nested icicle plots,”
in Joint Proceedings of the Fourth International Workshop on Euler
Diagrams and the First International Workshop on Graph Visualization
in Practice, 2014, pp. 53-62.

A. Telea and D. Auber, “Code Flows: Visualizing structural evolution of
source code,” Computer Graphics Forum, vol. 27, no. 3, pp. 831-838,
2008.

C. Vehlow, F. Beck, and D. Weiskopf, “Visualizing dynamic hierarchies
in graph sequences,” IEEE Transactions on Visualization and Computer
Graphics, 2016.

M. Graham and J. Kennedy, “A survey of multiple tree visualisation,”
Information Visualization, vol. 9, no. 4, pp. 235-252, 2010.

S. Bremm, T. von Landesberger, M. Hess, T. Schreck, P. Weil, and
K. Hamacherk, “Interactive visual comparison of multiple trees,” in
Proceedings of the 2011 IEEE Conference on Visual Analytics Science
and Technology. 1EEE, 2011, pp. 31-40.

M. Graham and J. Kennedy, “Extending taxonomic visualisation to in-
corporate synonymy and structural markers,” Information Visualization,
vol. 4, no. 3, pp. 206-223, 2005.

F. Chevenet, C. Brun, A. L. Banuls, B. Jacq, and R. Christen, “TreeDyn:
towards dynamic graphics and annotations for analyses of trees,” BMC
Bioinformatics, vol. 7, no. 1, pp. 439+, 2006.

E. R. Tufte, The visual display of quantitative information.
Press, 1983.

K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understand-
ing of hierarchical system structures,” [EEE Transactions on Systems,
Man and Cybernetics, vol. 11, no. 2, pp. 109-125, Feb 1981.

T. Munzner, F. Guimbretiere, S. Tasiran, L. Zhang, and Y. Zhou,
“TreeJuxtaposer: Scalable tree comparison using focus+context with
guaranteed visibility,” ACM Transactions on Graphics, vol. 22, no. 3,
pp. 453-462, 2003.

N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using dependency
models to manage complex software architecture,” in Proceedings of
the 20th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications. ~ACM, 2005, pp.
167-176.

J. Laval, S. Denier, S. Ducasse, and A. Bergel, “Identifying cycle causes
with enriched dependency structural matrix,” in Proceedings of the 16th
Working Conference on Reverse Engineering. 1EEE, 2009, pp. 113—
122.

M. Greilich, M. Burch, and S. Diehl, “Visualizing the evolution of
compound digraphs with TimeArcTrees,” Computer Graphics Forum,
vol. 28, no. 3, pp. 975-982, 2009.

M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf, “Parallel Edge
Splatting for scalable dynamic graph visualization,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2344—
2353, 2011.

W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,”
IBM Systems Journal, vol. 13, no. 2, pp. 115-139, 1974.

D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053-1058,
1972.

M. Rosvall and C. T. Bergstrom, “Multilevel compression of random
walks on networks reveals hierarchical organization in large integrated
systems,” PLoS ONE, vol. 6, no. 4, p. €18209, 2011.

M. Beck, J. Triimper, and J. Dollner, “A visual analysis and design tool
for planning software reengineerings,” in Proceedings of the 6th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis. 1EEE, 2011, pp. 1-8.

Graphics



