
Visualizing AI Playtesting Data of 2D
Side-scrolling Games

Shivam Agarwal
University of Duisburg-Essen

shivam.agarwal@paluno.uni-due.de

Christian Herrmann
University of Duisburg-Essen

h.christian92@gmx.de

Günter Wallner
Eindhoven University of Technology
University of Applied Arts Vienna

g.wallner@tue.nl
Fabian Beck

University of Duisburg-Essen
fabian.beck@paluno.uni-due.de

Abstract—Human playtesting is a useful step in the game
development process, but involves high economic costs and is
time-consuming. While playtesting through artificial intelligence
is gaining attention, it is challenging to analyze the collected
data. We address the challenge by proposing visualizations to
derive insights about level design in 2D side-scrolling games.
To focus on the navigation behavior in the level design, we
study the trajectories of computer agents trained using artificial
intelligence. We demonstrate the effectiveness of our approach by
implementing a web-based prototype and presenting the insights
gained from the visualizations for the game Sonic the Hedgehog 2.
We highlight lessons learned and directions to customize the
approach for other analysis goals of playtesting.

Index Terms—artificial intelligence, playtesting, visualization

I. INTRODUCTION

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Playtesting—the process of exposing players to a game to
assess their behavior and experience with it [1]—has become
commonplace in game development. However, playtesting
with human players can be a time-consuming and costly
task, which may limit its application, especially for smaller
and independent studios (cf. [2], [3]). At the same time,
the virtual worlds of navigation-based games are getting
more complex, making it infeasible to exhaustively test them
manually. There is an increased interest in the application of
artificial intelligence (AI) to automate (parts) of the playtesting
process. Indeed, research on using AI for the purpose of
playtesting is proliferating ranging from game balancing [4],
[5] to navigation [1], [2] and covering a wide variety of
games, including board games (e.g., [4]), collectible card
games (e.g., [5]), matching tile games (e.g., [6]) and others
(e.g., [1], [3]). Moreover, AI allows to take different skills
and goals of players into account to build agents with distinct
behaviors (e.g., [7], [8]).

Just like with human playtesters, it is essential for game
designers to understand the behavior of agents as artificial
playtesters before allowing actionable decisions. Visualization
can serve as an effective means to aid the analysis. While
game AI research is already taking advantage of visualization
(e.g., [9]–[12]), it is still less leveraged in games user research.

Complex maneuvers in 2D side-scrolling jump-and-run
games make the level design and playtesting challenging for

game designers. We propose a visualization approach showing
the navigational behavior of agents for testing the level design.
We implement our approach for a specific game (Sonic the
Hedgehog 2) in a web-based visualization tool. Then, we
discuss insights derived from the visualization and reflect on
the challenges we encountered. These lessons learned can
serve as inspiration for advancing this line of research.

II. RELATED WORK

Several works have employed AI to assist in playtesting,
taking benefit of agents exhibiting different gameplay behav-
iors. Guerrero-Romero et al. [7] discusses a methodology for
automated testing based on a team of agents pursuing different
goals such as winning, exploring, and collecting. Similarly, but
approaching the topics rather from a games user research than
AI perspective, Stahlke and Mirza-Bababei [1] also outline
opportunities and challenges posed by using AI to train agents
that mimic the navigational behavior of humans in evaluat-
ing level designs. Zhao et al. [3] discuss two fundamental
metrics—skill and style—which human-like agents need to
vary to model different behaviors. Similarly, Holmgard et
al. [8] developed AI agents who behave differently based on
their personas and was extended by Mugrai et al. [6] who
developed procedural personas specifically for Match-3 games.
Silva et al. [4], taking a more game-specific approach, used
different agents to analyze which play styles are best suited for
the different maps offered by the boardgame Ticket to Ride.
Ariyurek et al. [13] used trained agents specifically to find
bugs while Garcia-Sanchez et al. [5] used an evolutionary
algorithm to create decks of cards in HearthStone to be played
by an AI against human-designed decks. Chang et al. [12]
proposed exploration techniques to amplify the coverage of
game environments starting from human playtester data. Pfau
et al. [11] explored the use of unsupervised solving to test
riddles in adventure games for solvability.

These works show that using AI for playtesting have been
explored from a variety of perspectives. Although some of the
above mentioned works discuss the potential of visualization
(e.g., [7]) or make use of data visualizations (e.g., [4], [8],
[12]), the main focus is on the AI technology rather than
on dedicated solutions for visualization of AI behavior. Some



notable exceptions include the work of Douglas et al. [10],
who built saliency maps based on an agent’s interpretation
of the game environment to help convey the agent’s decision
making. Further, Agarwal et al. [9] proposed a timeline-based
visualization of direct and indirect interactions between agents
to help understand competition and collaboration strategies.
However, these approaches are not targeted specifically for
the purpose of playtesting. Most similar is the work of Stahlke
et al. [2], who proposed a framework for configurable agent
navigation behavior paired with a simple visualization of sim-
ulated data. However, unlike our approach, their visualization
shows trajectories of only one agent at a time.

III. APPROACH

Our approach proposes visualizations to analyze level de-
sign showing navigational behavior from AI playtesting data.
We focus our approach on a specific game and implement the
proposed visualizations in a web-based prototype.

A. Use Case: Sonic the Hedgehog 2

To demonstrate visualizing AI playtesting data, we choose
a 2D side-scrolling platforming game—Sonic the Hedge-
hog 2 [14]. Sonic is the in-game character controlled by a
human player. The goal of each game level is to finish it by
making Sonic run from left to right while avoiding obstacles
such as enemies or traps (which might kill Sonic). The action
space in the game is simple: At any point, Sonic can either
run (left or right), roll, duck down, jump, or perform a spin
dash move (roll with high speed). Most of the enemies can be
killed by jumping on or rolling through them. While advancing
through the level, Sonic can collect different power-ups. Most
notable are the rings that accumulate and protect Sonic from
dying. If Sonic has no rings and gets hit by an enemy, it dies,
loses a life, and has to start the level again.

B. AI Training Approach

We use the NeuroEvolution of Augmenting Topologies
(NEAT) algorithm [15] in a Python implementation [16] for
training agents to play the game. The algorithm implements
a genetic approach to deep reinforcement learning where the
structure of the neural network evolves over several genera-
tions. Each generation consists of 30 agents that play the game.
The best-performing agents from a generation are selected for
crossovers to make the next generation. A reward function
determines the performance of each agent. Since the goal of
the game is to reach the far right end of the level, we use
a simple reward function based on the Euclidean distance
between final position of the Sonic and the goal position.

We use the Open AI Gym environment [17] for the agents
to play the game. The position of each AI agent at every frame
during the game is recorded along with the received reward
value for each game level. We also include the generation
number of each AI agent in the data. The recorded data is
then used to construct visualizations, as explained next.

C. Visualization

The specific goal of the visualization is to enable visual
analysis of the navigation behavior of agents and to assess
the difficulty of obstacles. To this end, assuming that different
levels of training can reflect different levels of expertise of
humans, we compared the behavior of agents from different
training iterations (generations). Aside a plot of the overall
agents’ performance across the training process, we visualize
the individual trajectories of the agents within the level for
selected generations. An example of the visualizations is
shown in Figure 1. The line chart at the top encodes the
minimum (—), average (—), and maximum (—) reward values
for the population of agents in each generation along the
training process. Two maps of the selected level [18] are
shown below the line chart. For each map, there is a dropdown
menu to select a specific generation of agents. Showing many
individual trajectories of agents would create clutter due to
overlap and make it difficult to derive meaningful insights.
Hence, taking inspiration from an existing approach [19], we
calculate and overlay aggregated trajectories on top of the
map, and extend the visualization by showing the rewards
earned by agents across generations. Characteristic points are
calculated by analyzing all the trajectories of agents in the
selected generation and shown as white circles. The width of
a black line between two circles denotes the travel frequency
of agents between the two points in either direction.

IV. DISCUSSION

Our approach is a step towards visualizing AI-based
playtesting data of 2D side-scrolling games. In the following,
we discuss what kinds of insights can already be found as well
as what are lessons learned and directions for future work.

A. Insights

Figure 1 shows the aggregated trajectories for agents of
generation 29 (Figure 1b) and 56 (Figure 1c). By examining
generation 29, we see that the agents were able to overcome
initial obstacles and travel far in the level. The thick black line
near the first waterfall (Figure 1b1) indicates there was a lot
of movement in this region. On a closer look, we see that the
waterfall has some enemies and the preceding black lines are
thinner than the one placed above the waterfall. Knowing the
game mechanics, we can infer that near the waterfall, some
agents of generation 29 got hit by the enemy in the waterfall
and got knocked back, indicating that even some intermediate-
level players might find the waterfall obstacle difficult (maybe
due to the presence of enemies in the waterfall). The agents
who learned to overcome this obstacle did not face trouble
in crossing the second waterfall (Figure 1b2), suggesting
that executing the maneuver to cross similar obstacles is not
difficult to reproduce.

The line chart at the top (Figure 1a) shows that at least
some agents learned to gain a maximum reward (complete the
level) as early as in generation 3. It indicates that the level
design is easy to navigate. Given that Emerald Hill Zone is



a

b

c

maximum

average

minimum

generations

re
w
ar
d

b1

b2

c1

c2
c3

b3

Fig. 1. Visualizations showing (a) a line chart of reward values received by agents across training process (generations), the aggregated trajectories of agents
from (b) generation 29, and (c) generation 56 in Emarald Hill Zone level of the game Sonic the Hedgehog 2.

the first level this is likely also how it was envisioned in order
to introduce players to the game.

In contrast to generation 29, some agents of generation 56
started to take the upper route of the level (Figure 1c). More
agents in generation 56 discovered the secret path in the level
(Figure 1c1). These observations indicate that secret paths in
the level design can be discovered by more advanced players.
Although few agents in generation 29 learned to perform
the spin dash maneuver and cross the steep vertical wall
(Figure 1b3), still many agents in generation 56 were not able
to get past the obstacle, as shown by the thick black line before
the wall (Figure 1c2). This indicates that learning to apply the
spin dash maneuver in this situation may be difficult.

In contrast, the agents were not able to complete the Aquatic
Ruin Zone level. The line chart in Figure 2 (top) shows that no
agent in any generation earned the maximum possible reward
implying that none of them was able to complete the level.
This indicates the higher difficulty of the Aquatic Ruin Zone
level. Additionally, although the average reward received per
generation is slightly increasing, the maximum reward earned
has no steady pattern. Even in generation 11 (Figure 2), only
a few agents were able to travel farther as many of them died
overcoming the obstacles or facing enemies (downward black
lines indicate death). Similarly, Figure 3 shows the aggregated
trajectory of agents from generations 11 and 53 for the level
Hill Top Zone. We recognize a thick black line extending into
the wide gap at the beginning of the level. Most of the agents,
even in later generations, were not able to jump across the
wide gap, suggesting that the obstacle at the beginning of the
level might be more difficult to pass.

B. Lessons Learned
Insufficient Training or Hard Level? One of the chal-

lenges in using AI for playtesting is how to interpret the
failures of agents. For instance, in Figure 3, we can see that
many agents in later generations were not able to cross the

Fig. 2. The line chart (top) and aggregated trajectory visualizations (bottom)
of agents from generation 11 in Aquatic Ruin Zone level of the game.

wide gap. We learned that comparing agents across generations
enables us to answer the question partially. For instance,
selecting the generations with a peak in the line chart shows
the aggregated trajectory of agents in the selected generation.
The aggregated trajectory reveals whether the agents were able
to overcome obstacles and travel farther in the level, or not.

Tailoring Reward Functions. Reward functions drive the
behavior of agents. In our approach, we wanted to analyze the
design of obstacles and hence used a simple reward function
based on how far the agents traveled towards the goal position.
Hence, the agents learned to move farther. However, as shown
in Figure 1c3, we observe that the agents did not collect power-
ups for which they had to travel backward. As such, the reward
functions need to be tailored while training agents to exhibit
the intended behaviors. The intended behaviors themselves
can be based on different personas, representing different play
styles of human players. For instance, agents trained with a
simple reward function based on Euclidean distance (the one
we used) would mimic a beginner, whereas assigning higher



Fig. 3. Too hard or insufficient training?—Generation 11 (left) and 53 (right)

rewards for collecting power-ups (rings) could mimic play
styles of expert players. The different navigational behaviors
would be reflected in the trajectories, explorable through our
visualization.

Improved Visualizations. We overlaid the aggregated tra-
jectory on the map of the level. Although the technique depicts
the movement of agents, it does not show other game-specific
aspects. For instance, it does not show game or level-specific
events occurring during the gameplay (e.g., earthquakes in the
Hill Top Zone). The visualization needs to be customized to
display such events. Additionally, calculation of characteristic
points for aggregated trajectory used in the visualization can
be improved. Currently, it does not take walls or other bound-
aries into account, which can be important for interpreting
trajectories in some levels (e.g., in the Metropolis Zone level,
which has a maze-like structure with narrow passages).

C. Future Work

In our approach, the start position for all agents was kept the
same. However, to test obstacles in specific parts of the level
design, it would be desirable to change the start position of the
agents. As part of future work, the collection of playtesting
data can be integrated with the visual interface. The integration
will help game designers by giving them more control over
different configurations, such as, modifying the number of
agents in a generation, changing their start position, the
learning rate of agents, and customizing reward functions. The
visualizations can then be adapted to show the results of these
configurations, e.g. by showing the segments of trajectories to
focus on specific obstacles in level design, or including enemy
activity to offer context for AI behavior [9]. Using different
reward functions could create agents mimicking human players
at different levels of expertise. Hence, differentiating between
trajectories of such agents within the movement visualization
could also help make comparisons between them.

V. CONCLUSIONS

We proposed an approach to visually analyze the playtesting
data in 2D side-scrolling games, where artificial intelligence
(AI) is used to play the game levels. We focused our approach
on the game Sonic the Hedgehog 2 and used aggregated
trajectory visualization to analyze the navigation behavior
of agents across training iterations. While working with the
visualizations, we gained several insights about the design of
three levels in the game. Although we study only one game,
we envision that the approach can be generalized and extended
to other 2D side-scrolling games. We shared lessons learned

and discussed possible directions for visualizing the behavior
of AI agents to support playtesting.

ACKNOWLEDGMENTS

This research was partly funded by MERCUR (project:
“Vergleichende Analyse dynamischer Netzwerkstrukturen im
Zusammenspiel statistischer und visueller Methoden”).

REFERENCES

[1] S. N. Stahlke and P. Mirza-Babaei, “Usertesting without the user:
Opportunities and challenges of an AI-driven approach in games user
research,” Computers in Entertainment, vol. 16, no. 2, 2018.

[2] S. . Stahlke, A. Nova, and P. Mirza-Babaei, “Artificial playfulness: A
tool for automated agent-based playtesting,” in Extended Abstracts of
the CHI Conference on Human Factors in Computing Systems, 2019.

[3] Y. Zhao, I. Borovikov, F. de Mesentier Silva, A. Beirami, J. Rupert,
C. Somers, J. Harder, J. Kolen, J. Pinto, R. Pourabolghasem, J. Pestrak,
H. Chaput, M. Sardari, L. Lin, S. Narravula, N. Aghdaie, and K. Zaman,
“Winning is not everything: Enhancing game development with intelli-
gent agents,” IEEE Transactions on Games, vol. 12, no. 2, pp. 199–212,
2020.

[4] F. de Mesentier Silva, S. Lee, J. Togelius, and A. Nealen, “AI-based
playtesting of contemporary board games,” in Proc. of the Int. Confer-
ence on the Foundations of Digital Games, 2017.

[5] P. Garca-Snchez, A. Tonda, A. M. Mora, G. Squillero, and J. J. Merelo,
“Automated playtesting in collectible card games using evolutionary
algorithms,” Knowledge-Based Systems, vol. 153, no. C, p. 133–146,
2018.

[6] L. Mugrai, F. de Mesentier Silva, C. Holmgård, and J. Togelius,
“Automated playtesting of matching tile games,” in Proc. of the IEEE
Conference on Games, 2019, pp. 1–7.

[7] C. Guerrero-Romero, S. M. Lucas, and D. Perez-Liebana, “Using a team
of general AI algorithms to assist game design and testing,” in Proc. of
the IEEE Conference on Computational Intelligence and Games (CIG),
2018, pp. 1–8.

[8] C. Holmgard, M. C. Green, A. Liapis, and J. Togelius, “Automated
playtesting with procedural personas through MCTS with evolved
heuristics,” IEEE Transactions on Games, vol. 11, no. 4, pp. 352–362,
2019.

[9] S. Agarwal, G. Wallner, and F. Beck, “Bombalytics: Visualization of
competition and collaboration strategies of players in a bomb laying
game,” Computer Graphics Forum, vol. 39, no. 3, pp. 89–100, 2020.

[10] N. Douglas, D. Yim, B. Kartal, P. Hernandez-Leal, M. E. Taylor, and
F. Maurer, “Towers of saliency: A reinforcement learning visualization
using immersive environments,” in Proc. of the Int. Conference on
Interactive Surfaces and Spaces, 2019.

[11] J. Pfau, J. D. Smeddinck, and R. Malaka, “Automated game testing
with icarus: Intelligent completion of adventure riddles via unsupervised
solving,” in Extended Abstracts Publication of the Annual Symposium
on Computer-Human Interaction in Play, 2017, pp. 153–164.

[12] K. Chang, B. Aytemiz, and A. M. Smith, “Reveal-more: Amplifying
human effort in quality assurance testing using automated exploration,”
in Proc. of the IEEE Conference on Games (CoG), 2019, pp. 1–8.

[13] S. Ariyurek, A. Betin-Can, and E. Surer, “Enhancing the monte carlo
tree search algorithm for video game testing,” 2020.

[14] Sega, “Sonic the Hedgehog 2,” Game [Sega Genesis], November 1992,
sega, Tokyo, Japan.

[15] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[16] A. McIntyre, M. Kallada, C. G. Miguel, and C. F. da Silva, “neat-
python,” 2019, https://github.com/CodeReclaimers/neat-python Ac-
cessed: March, 2020.

[17] V. Pfau, A. Nichol, C. Hesse, L. Schiavo, J. Schulman, and
O. Klimov, “Gym Retro,” 2018, https://openai.com/blog/gym-retro/ Ac-
cessed: March, 2020.

[18] Sonic Retro, “Sonic the Hedgehog 2 (16-bit)/Maps,” 2019,
http://info.sonicretro.org/Sonic the Hedgehog 2 (16-bit)/Maps
Accessed: March, 2020.

[19] G. Wallner, N. Halabi, and P. Mirza-Babaei, “Aggregated visualization
of playtesting data,” in Proc. of the CHI Conference on Human Factors
in Computing Systems, 2019.


